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INTRODUCTION

This research project represented

effort between Lewis Research Center (LeRC)

State University (CSU). This project has

under contract with Analex Corporation.

a cooperative

and Cleveland

been continued

SUMMARY OF RESEARCR ACCOMPLISHMENTS

Initial investigation by the principal investigator

occurred during the summer of 1988 under a NASA/ASEE Summer

Faculty Fellowship, and discussed in the

Report #1. Continued investigation which

NAG3-1008, for the time period February 8,

1989, was also reported in the first interim status report.

Interim Status

occurred under

1989-June 15,

Additional work was continued during Summer,

under a NASA/ASEE Summer Faculty Fellowship. This was

included in the first interim status report.

1989,

also

NASA LeRC approved the continued funding of this

grant for the period September 15, 1989 through September

14, 1990. The following accomplishments occurred during the

period September 15, 1989 through March 15, 1990:



I o A rigorous solution for the

free/free beam with an axial

developed• Solution of the

suggested that the three

present.

dynamic analysis of a

tension pre-load was

characteristic equation

required rigid body modes were

• A paper

Linear

Professor

Professor

entltled,"Dynamic Analysis of Space-related

and Non-linear Structures", was co-authored by

Bosela, Dr. Francis Shaker (NASA LeRC), and

Demeter Fertis {University of Akron, Akron,

was presented by Professor Bosela at

Theoretical and Applied

during March, 1990.

Ohio). The paper

the Southeast Conference of

Mechanics XV. Atlanta, Georgia,

. A three-node beam element was developed, using Martin's

methodology. It was duplicated using a variational

formulation. Its performance in various sample problems

was tested.

4 •

,

The bow-string problem was identified as an idealized

model of a solar array which had potential to yield

rigid body rotation capability.

Numerous

stiffness

Argyris,

Their

papers

matrices were reviewed,

Saunders,

matrices were

regarding derivation of hlgher-order

including work by

Paz, Nartin, Marcal, and others.

tested for rigid body capabilities.
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From March 16. 1990, through the completion of

grant, the following accomplishments were made:

this

I °

.

3 •

•

Exact solutions of various pre-loaded beam problems were

examined, and the Galerkln criterion was used to develop

stiffness and mass matrices.

criterion were

dynamic analysis

The modified matrices developed using the Galerkin

incorporated into a finite element

algorithm, and the resulting finite

element solution compared with the rigorous solution.

A directed force correction matrix for the pre-loaded 2

dimensional beam element was developed at the global

level. This matrix produced a tangential stiffness

matrix which does possess all of the required rigid body

modes.

This global force correction was incorporated into a

finite element dynamics algorithm, and was shown to

correct the missing zero elgenvalue customary in

traditional finite element solutions, without affecting

the eigenvalues corresponding to the flexible modes. It

also performed very well in the

dlagonalization/partltioning methodology used in matrix

dynamic analysis.
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, The detailed results of thts study were published as

doctoral dissertation at the University of Akron. Akron,

Ohio, and are attached. The period of performance for

this grant expired on April 6, 1991. The final

dissertation was submitted for publication during the

summer of 1991. and is available at the University of

Akron library.



ABSTRACT

Space structures, such as the space station solar

arrays, must be extremely light-weight, flexible structures.

Accurate prediction of the natural frequencies and mode

shapes is essential for determining the structural adequacy

of components, and designing a controls system. The tension

preload in the "blanket" of photovoltaic solar collectors,

and the free/free boundary conditions of a structure in

space, causes serious reservations on the use of standard

finite element techniques of solution. In particular, a

phenomena known as "grounding", or false stiffening, of the

stiffness matrix occurs during rigid body rotation.

This dissertation examines the grounding phenomena

in detail. Numerous stiffness matrices developed by others

are examined for rigid body rotation capability, and found

lacking. Various techniques are utilized for developing new

stiffness matrices from the rigorous solutions of the

differential equations, including the solution of the

directed force problem. A new directed force stiffness

matrix developed by the author provides all the rigid body

capabilities for the beam in space.
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Key words (Geometric stiffness matrix, grounding, rigid body

modes, Galerkin criterion, finite element dynamic analysis,

eigenvalues/eigenvectors)
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CHAPTER 1

INTRODUCT ION

In order to be cost-effective, space structures must

be extremely light-weight, and subsequently, very flexible

structures. The power system for Space Station Freedom is

such a structure. Each array consists of a deployable truss

mast and a split "blanket" of photovoltaic solar collectors.

The solar arrays are deployed in orbit, and the blanket is

stretched into position as the mast is extended during

deployment. Geometric stiffness due to the tension preload

in the blanket make this an interesting non-linear problem.

The space station will be subjected to various

dynamic loads, during shuttle docking, solar tracking,

attitude adjustment, etc.. Accurate prediction of the

natural frequencies and mode shapes of the space station

components, including the solar arrays, is critical for

determining the structural adequacy of the components, and

for designing a dynamic controls system•

This dissertation has the following objectives:

i • Examine in detail the "grounding" phenomenon associated

with rigid body rotation of a pre-loaded beam in space•



.

,

2

Examine beam geometric stiffness matrices developed by

others with respect to rigid body motion capabilities.

Develop higher order stiffness matrices from the

rigorous solution utilizing Galerkin's criterion,

incorporate these stiffness matrices into a finite

element algorithm, and compare the finite element

solutions with the rigorous solutions.

, Examine the directed force (bow-string) problem for its

potential as a basis for developing stiffness matrices

which possess rigid body rotational capabilities.

, Check the performance of any new matrix which possesses

a complete set of rigid body motion capabilities in the

diagonalization/partitioning methodology used in dynamic

response.



CHAPTER 2

LIMITATIONS OF CURRENT METHODOLOGY

Most structural systems are rigidly attached to

supports at either or both ends. In order for any movement

to occur, the structure must deform, and internal strain

energy is developed. Space structures, on the other hand,

are not rigidly attached to the ground. Instead, they are

free to move as rigid bodies as well as to deform.

Complex structures are generally analyzed using

finite element computer programs which solve the dynamic

equations of motion using matrix analysis techniques. The

equations of motion are set up in the form of the

generalized eigenvalue problem

{ui} = {Ri)

where [K] is the global stiffness matrix

[M] is the global mass matrix

gi are the natural frequencies of vibration

{ui} are the displacement or mode shape vectors

{Ri} are the forces

3
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Using that basis, rigid body modes are the eigenvectors

associated with zero frequencies of vibrations

(eigenvalues).

Current methodology utilizes MSC/NASTRAN solution 64

to generate the tangential stiffness matrix for the deployed

array, storing this matrix in a database, then using this

matrix in solution 63 dynamic analysis, to obtain the

frequencies of vibration. As a routine check of the model,

the global stiffness matrix is multiplied with a matrix of

the rigid body modes to determine whether any pseudo-forces

occur. (Whether strain energy has developed.) Since no

internal stresses should occur during rigid body motion, the

generation of pseudo-forces indicates that an internal

"grounding", or false stiffening, of the system occurs, due

to errors or deficiencies in the finite element model.

It was found that the global stiffness matrix does

not possess rigid body rotation capabilities. In order to

predict the dynamic response of the structure, a Craig-

Bampton substructuring scheme is used. However, certain

erroneous non-zero terms appear in the null set of the

partitioned matrices due to the grounding effect. They must

be zeroed out, and the missing rigid body modes appended to

the matrix, in order to more accurately predict the dynamic

response [i].
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The author idealized the problem as a free/free beam

in tension, and found [2] that the pseudo-forces are

developed at the element level due to limitations inherent

in the geometric stiffness matrices currently in acceptable

use. In particular, the geometric stiffness matrices for

the beam element lack the capability for rigid body

rotations, especially when the rotations are large.

The geometric (initial stress) stiffness matrices in

current use developed from a Bernoulli-Euler formulation

have been shown to provide acceptable results for most

static displacement and buckling problems, provided a

sufficient number of elements are used [3]. However,

refinement of the mesh does not produce convergence to the

missing zero frequency in the dynamics problem of the pre-

loaded beam with free/free boundary conditions. In

addition, higher frequencies may be significantly in error.

Table 1 compares the finite element solution for a pre-

tensioned beam with pinned/roller and free/free boundary

conditions.



TABLE 1 Comparison of Finite Element Method Versus Exact

Solution for a Beam in Tension

2
A = 48 in

6
E = 30 x 10 psi

4
I = i000 in

m = 0.03525 Ib-sec2/in 2

P = i0,000,000 Ib

L = I00 IN

Pin/Roller

number of elements

freq 1 2 4

1 1142 1056 1053

2 3501 3257 3195

3 4758 4180 3807

4 10291 8494

8

% error

1053

3180

3794

8357

3.5

axial

4.0

9.0

rigorous sol

19
Fertis

1043

3647

7669

Free/Free Beam

number of elements

freg 1 2 4

1 0 0 0

2 0 0 0

3 580 580 579

4 2798 2383 2381

5 7001 6725 5991

rigorous sol

8

% error

0

0

579

2378

5958

0

0

15.0

4.7

Bose_6 17a/Shaker

0

0

0

2017

5725



beam is

CHAPTER 3

ELASTIC STIFFNESS MATRIX

The elastic stiffness matrix for a 2-node Bernoulli

[Ke] = EI

L 3

AL2/I 0 0 -AL2/I 0 0

0 12 6L 0 -12 6L

0 6L 452 0 -65 2L 2

-AL2/I 0 0 AL2/I 0 0

0 -12 -6L 0 12 -6L

0 6L 2L 2 0 -6L 4L 2

The [Ke] matrix must possess the capacity of a full

set of rigid body modes. In other words, the element must

be able to both translate and rotate without developing

stresses (see Figure i).



a ,

a a' b b'

OOee'O O--O

Rigid Body Translation in Axial Direction

(UTx} : [i,0.0,i,0,01T

b.

a' b'

o o
I I
! I

I I

I I

O O

a b

Rigid Body Translation in Transverse Direction

{UTy} : [0,1,O,O,l,0] T

!

a I

c. Rigid Body Rotation

{URBR} : 8[O,-L/2,1,O,L/2,1] T

Figure 1 Rigid Body Modes
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Note that in Fig l(c) that the rotation is

considered to be relatively small , such that the

displacement in the axial direction due to the rotation is

negligible.

Multiplying [Ke] x [Rigid Body Mode] =

[o,o,o,o,o,o]

holds for a11 three modes. Hence, [Ke] possesses a11 the

required rigid body mode capabilities.

Another way of determining whether [Ke] possesses

all the rigid body mode capabilities is to solve the

dynamic analysis of the beam with free/free boundary

conditions. This was done [5] using the finite element

dynamics algorithm in the computer program NLFINITE.FOR

(Appendix C). The results were three zero eigenvalues and

corresponding rigid body mode shapes.

Another beam stiffness matrix which incorporates

shear effects is referred to as a Timoshenko beam. The

elastic stiffness matrix for a Timoshenko beam is

EI(i/(l+i))

[Ke]- L3

AL2(I+_)/I 0 0 -AL2(I+_)/I 0 0

0 12 6L 0 -12 6L

0 65 (4+_)L 2 0 -6L (2-_)L 2

-AL2(I+_)/I 0 0 AL2(I+_)/I 0 0

0 -12 -6L 0 12 -6L

0 6L (2-_)L 2 0 -6L (4+_)L 2



I0

Where _ = 12 EI/(L2K'AG), which corrects for shear

deformation. As K'AG becomes very large, _ _ 0, and [Ke] T =

[Ke]. The Timoshenko elastic stiffness also possesses a

full set of rigid body modes.

A major difference in the Timoshenko approach is

that the bending rotation is considered independently in the

derivation, not simply the derivative of the displacement

equation, as is done in the Bernoulli derivation.



CHAPTER 4

GEOMETRIC STIFFNESS MATRIX DEVELOPMENT

The presence of an axial force introduces additional

stiffness terms, resulting in the geometric stiffness, or

initial stress stiffness matrix. Various formulations of

the geometric stiffness matrix have been developed.

When the Hermitian interpolating polynomials (used

to derive the [Ke] matrix) are used in deriving the

geometric stiffness coefficients [4], the resulting [Kg] is

referred to as the consistent geometric stiffness matrix

(Bernoulli beam geometric stiffness).

[Kg] = P/(30L)

0 0 0 0 0 0

0 36 3L 0 -36 3L

2 2
0 3L 4L 0 -3L -L

0 0 0 0 0 0

0 -36 -3L 0 36 -3L

0 3L -L 2 0 -3L 4L 2

Application of the rigid body modes to [Kg] results in

11



[Kg] x

1 0 0

o 1 -LB/2

0 0 8

1 0 0

0 1 LB/2

0 0 8

0 0 0

0 0 -P8

0 0 0

0 0 0

0 0 P8

0 0 0

12

The terms ± P8 are fictitious forces generated

during the rigid body rotation. Similarly, dynamic

analysis, using NLFINITE.FOR, yields only two zero

eigenvalues for the free/free beam in tension, corresponding

to axial and transverse rigid body translations only.

Various formulations have been used for establishing

the geometric stiffness matrices from the static

displacement problem. Martin [6] used a strain energy

formulation with interpolating polynomials. Clough [7] used

minimization of the potential function with the Hermitian

polynomials. Both approaches yield a consistent geometric

stiffness matrix, which lacks rigid body rotation

capability, as was previously demonstrated.

The author followed Martin's methodology in

developing a 3-node beam geometric stiffness matrix [8].

The following matrix was obtained.
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P

7

3L

-2O

3L

13

3L

0

0

18272

105L

3469 659L

105 105

0 0
64

3L

-22096 -4208 27292

105L 105 I05L

304 23L -72
-- 0

5 2

109L

0

-44 31

0 -- 0 0 --

3L 3L

SYMMETRIC

3824 739 -5296 56 1472

-- 0 -- 0

105L 105 105L 5 105L

-3469 -659L 4208 -23L -739 659L

0 0 --

105 105 105 2 105 105

[Kg]
3-NODE

By

translational capabilities. The exact rigid

vector is

[L(I-COS(2S) )/2,-LSIN(2S)/2,2S,0,0,2S,

-L (I-COS (2B))/2, LSIN(2S)/2,2B] T ,

inspection, [Kg]3_node has two rigid body

body rotation
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where B is 1/2 the angle of rotation.

If this vector is expanded in power series form,

upon retaining the first two terms, and factoring out BL,

one obtains

{URBR} T : [B-B3/3,-I+2_2/3•2/L,O,O•2/L•-B+_3/3•I-2B2/3•2/L].

Multiplying [Kg] by {URB R} yields

[-2B 2 91 7383-16B I(17 3B3-3B) 8B 2 16B-I06 7B 3

L(33.0183-6B),-6B2,14.93B3,L(3B-17.3383)],

which contains numerous non-zero terms. Hence, [Kg]3_node

does not possess rigid body rotation capability.

Saunders [9] solves for the exact solution of the

differential equations using a Timoshenko approach• then

expands his "exact" stiffness matrix in a power series

solution, obtaining a series of matrices of increasing

order.

Saunders "exact" stiffness matrix is

P

CK] :-

Z

3R'SIN(BL)

1-COS BL

SIN(BL)

BR

L.COS(BL)

-BR.SIN(BL) COS(BL)-I BR.SIN(BL)

SIN(BL)

I-COS(BL) L COS(BL)-I

BR

SIN(BL)

BR

SYMMETRIC

L'COS(BL)
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where

B = I(P/EIR)

a : BL

R : (I-P/K'AG)

P = AXIAL LOAD

K'AG = beam shear rigidity

I = moment of inertia

z = SIN(BL)-(2.TAN(BL/2)-BLR)

By observation, rigid body translation capability is

present in the transverse direction.

P8

Upon multiplying [K].{URB R} : --
Z

-2COS(a)-LRB.SIN(e)+2

0

2COS(a)+LRB.SIN(a)-2

0

For small a, COS(a)_I, SIN(a)_a.

-2COS(a)-LRB.SIN(a)+2 : -LRBa

= -LRB.BL

= -L2RB 2
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P8

z

P8

sin(a) (2.Tan (e/2) - eR)

Pe

e (e - eR)

P8

2
e (i - R)

Thus, (p/z)(-pL2/EI) : p0(-B2L2R)

2
e (l-R)

- PSR

(l-R)

- PS(K'AG - P)

K'AG

P

K'AG

: (P - K'AG)8.

Thus, Saunders' "exact stiffness matrix does not

possess the required rigid body rotation mode.
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Argyris [I0] uses his "natural formulation" to

develop [Ke] and [Kg], which are identical with traditional

[Ke] and [Kg]. He obtains another matrix [Knc], referred to

as his load correction matrix, which compensates for non-

conservative forces.

If we consider the axial load to remain tangent to

the slope of the beam at the end points, Argyris's total

geometric stiffness matrix [Kg + Knc] becomes

[Kg] = P

TOTAL

0 0 SIN2B 0 0 0

0 6/5L 1/10+COS2B 0 -6/5L i/I0

0 I/i0 2L/15 0 -i/i0 -L/30

0 0 0 0 0 -SIN2B

0 -6/55 -i/i0 0 6/55 -I/10-COS2B

0 i/i0 -L/30 0 -i/i0 2L/15

The matrix is nonsymmetric. Multiplying [Kg]TOTA L

by the exact rigid body rotation vector, then applying small

angle considerations, yields [4B2,0,0,-482,0,0] T, which

contains non-zero terms. Hence, [Kg]TOTAL does not possess

rigid body rotation capability. Note that the pseudo-forces

now occur in the axial direction.

Martin [ii] summarizes work done by Marcal [12]

which introduced higher order terms in his initial
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displacement matrices. In addition to the conventional [Ke]

and [Kg], his initial displacement matrices are

[81]:AE/L

0 b 4 0 0 -b 4 0

b 4 b 2 0 -b 4 -b 2 0

0 0 0 0 0 0

0 -b 4 0 0 b 4 0

-b 4 -b 2 0 b 4 b 2 0

0 0 0 0 0 0

and

[_2] = P

0 0 0 0 0 0

2 2
0 1.5b 4 0 0 -1.5b 4 0

0 0 0 0 0 0

0 0 0 0 0 0

2 2
0 -l.5b 4 0 0 1.5b 4 0

0 0 0 0 0 0

where u = b I + b2x

v = b 3 + b4x.



The basic non-linear equation is
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[K + 1/2 _I + 1/3 82].{U} = {R}.

By inspection, [_i] and [_2] possess the required

rigid body translation capabilities.

Let the rotation angle = 2B (Figure 2).

u I = b 1

u2=b I + b2L

b 4 = (v2-vl)/L

b 4 = (LB + LB)/L

b 4 = 28

b42/2 = 4B2/2 = 282 .

Similarly, b 2 = -2B 2.

vl:b 3

v2:b 3 +b4L

Thus, the rigid body rotation check becomes

[K + N 1 + N2].{URB R} must equal 0,

where

[NI]:AE/L

0 13 0 0 -B 0

8 -.8 2 0 -B .82 0

0 0 0 0 0 0

0 -.8 0 0 .8 0

-.8 .8 2 0 8 -B 2 0

0 0 0 0 0 0
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-LB 2

L_

-LI3_

L_ 2

Figure 2 Rigid Body Rotation Angle of 2B
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and

[N2] = P

0 0 0 0 0 0

0 2B 2 0 0 -2B 2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 -2B 2 0 0 2B 2 0

0 0 0 0 0 0

Performing the rigid body rotation check yields

[0,4AB3E-4B3LP-2BP,0,0,-4AB3E+4B3LP+2BP,0] T.

Note that non-zero pseudo-force terms still appear.

Development of the stiffness matrices from the

equation of motion has been investigated by Paz, using both

a Bernoulli [13] and Timoshenko [14] beam approach. He

developed his "exact" stiffness matrix, then expanded it in

a power series solution.

His solution, based on the transverse vibration of

a beam with an axial compression load, is of the form

IS] : [K] - [G0]P - [M0]R 2 - [AI]P_ 2 - [G1]P 2 - [MI]R 4 "''.

where



[K]

[Go]

IS0]
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is the traditional elastic stiffness matrix with no

axial terms.

is the standard geometric stiffness matrix.

is the first order mass matrix (consistent mass

matrix).

[M0] = mL/420

156

22L 4L 2

54 13L

-13L -3L 2

symmetric

156

-22L 4L 2

[AI] is the second order mass-geometrical matrix.

[AI]:mL3/EI

" 1/3150

L/1260 L2/3150

-1/3150 L/1680

2
-5/1680 5 /3600

SYMMETRIC

1/315o

-L/1260 L2/3150

[GI] is the second order geometrical matrix.

[Ol]= I/EI

L/T00

L2/1400 IIL3/6300

-L/700 -L2/1400

L2/1400

SYMMETRIC

L/TO0

-1353/12600 -52/1400 IIL3/6300



[M1] is the second order mass matrix.
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[MI] =

m2L 5

i000 EI

59

161.7

223L 71L 2

2910.6 4365-9

1279 1681L

SYMMETRIC

59

3880.8 23284.8 161.7

-1681L -I097L 2 -223L 71L 2

2384.8 69854"4 2910.6 4365.9

The mass matrices don't possess rigid body modes,

but they are not intended to, since they generate the

inertial forces. [GI] possesses all the rigid body modes.

Hence, no correction to [Go], which lacks rigid body

rotation capability, is applied. Thus, "grounding" during

rigid body rotation still occurs.

Similarly, Paz's Timoshenko formulation (which

includes rotary inertia and shear terms), generates the

matrix

[R0]=mL/30)(R/L)2(I+E/K'G)

36 SYMMETRIC

3L 4L 2

-36 -3L 36

3L -L 2 -3L 4L 2
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where the terms within the matrix are the same as the

consistent geometric stiffness matrix. Thus, [R 0] lacks

rigid body rotation capabilities.



CHAPTER5

FORCEUNBALANCE

Closer examination of the traditional static

formulation of [Kg] indicated that there is a load imbalance

in the representation, and that pseudo-forces occur to

maintain equilibrium (Figure 3).

Recall that [Kg].{URB R} = {-PS,0,PS,0}. Using

Figure 3, and letting the sum of the moments at O equal

zero, yields

PLSIN2B - P'LCOSB : 0

P' = P.TAN2B

= P.TAN8

: P8 + higher order terms

Thus, P' represents pseudo-forces required for equilibrium.

In reference [15], Collar and Simpson acknowledge

the lack of rigid body rotation capability of [Kg], but

indicate that it is not a problem, because the energy

representation is correct.

25
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L/2'SIN2B

Figure 3 P' Represents Pseudo-forces Required for

Equilibrium
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Consider the work/energy relationship from Figure

3, without P'

WORK DONE BY P = PL(I-COS2B)

= 2PL(I-COS2B)/2

= 2PL.SIN2B

= 2PLB 2 + #(B 4) + higher order terms

Similarly, using a matrix development

ENERGY = I/2{u}T.[K].{U}

= pB2/2[-2,0,2,0].[-L,2,L,2] T

= 2PLB 2 .

Therefore, the energy relationship is correct for

the B 2 terms, but the higher order terms are neglected. For

large rigid body rotation, this is significant.

It should be noted that as long as the pre-load P is

assumed to remain horizontal during rotation, work will be

done by the force. Thus, true rigid body rotation cannot

occur. In order for the true strain energy to equal zero,

the force P must change its orientation as the beam rotates

(ie. a follower force, as in Figure 4).

WORK DONE = -L(P+P.COS2B)(I-COS2B)/2 + P.SIN2B(L.SIN2B)/2

= pL[-(I+COS2S)(I-COS2S)+SIN22S]

2 2
= PL/2(-I+COS 2B+SIN 28)

= PL/2(-I+I)

= 0.
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P

P.cos2B

P.SIN2B

2B /_ LB

[
P-SIN2B

P.COS2B

J

P

(l-cos2fl)

L/2.SIN2B

Figure 4 Work Done During Rigid Body Rotation by

Follower Force



CHAPTER 6

RIGOROUS SOLUTION OF FREE�FREE BEAM WITH AXIAL TENSION LOAD

The author [16] also developed the rigorous free

vibration solution of a free/free beam with an axial tension

pre-load. The equation of motion developed agrees with that

given by Paz [13] uses to develop his dynamic stiffness

matrix. Solution of the differential equation is similar to

that given by Shaker [17]. It was also shown that the

characteristic equation developed indicated the presence of

three zero frequencies, and the corresponding rigid body

modes.

29



CHAPTER 7

DIRECTED FORCE PROBLEM

Since, as was shown in Section 4, traditional

formulations did not satisfy equilibrium conditions during

rigid body rotation, it was determined that investigation of

the directed force problem is necessary.

Consider a beam with axial forces which remain

directed at the opposite end points (Figure 5). This force

system can be shown to be conservative. Derivation of

stiffness matrices for this system was examined, utilizing

Clough' methodology [7], Saunders' methodology [9], and

Galerkin's criterion. The first two methods are discussed

in this section. The last method is discussed in Section 9.

Clough's Methodology for the

Directed Force Problem

Consider the beam in the deformed state shown in

Figure 6. Summing forces in the X direction and setting

them equal to zero yields

P cos 8 = N(X) cos W'(X) + V(X) sin W'(x)

30
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P A B

0 o

P

Figure 5 Beam with a Directed Force
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P cos 8 V(x) sin W'(x)

N(x) = - (7.1)
cos W'(x) cos W'(x)

For small displacements

N(x) = P cos 6 - v(x) w'(x)

Summing forces in the Y direction and setting them equal to

zero yields

P sin 8 : N(x) sin W' - V(x) cos W'

N(x) = P sin 8 + V(x) cos W'

sin W' sin W'
(7.2)

For small rotations, Eq.(7.2) becomes

N(x) = P sin 8 + V(x)

W' W'

Equations (7.1) and (7.2) can be rewritten

N(x) cos W' P COS 8 COS W'

= - v(x) (7.3)
sin W' cos W' sin W'
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P

x)

N(x)

N(x) sin W'

P cos 8

8

P sin 8

V(x) cos W'

N(x) cos W' V(x) sin W'

Figure 6 Bowstring in Deformed Position and Resultant

Shear, Moment, and Axial Forces
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N(x) sin W'

COS W '

P sin @ sin W'

= + vCx) (7.4)
sin W' cos W'

Adding equations (7.3) and (7.4) yields

[cos5inw lroossin]N(x) + : P_ +sin W' cos W W' cos W'

(7.5)

or

N(x) =

P(cos 8 cos W' + sin O sin W'

sin W' cos W'

cos W '2 + sin W '2

sin W' cos W'

N(x) = P(cos B cos W' + sin 8 sin W')
(7.6)

During rigid body rotation, W' = 8, and equation (7.6)

becomes

NCx) = P.

Clough and Penzien [7] develop the equation for the

geometric stiffness matrix as
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L

KgiJ = I N(x) Hi'(x) Hj'(x) dx

0

The Hermitian interpolating polynomials, and

derivatives, are

H 2 = 1 - 3(x/L) 2 + 2(xlL)

H 2' : -6 x/L 2 + 6x2/L 3

H 3 = X -2x2/L + x3/L 2

H 3' = 1 - 4x/L + 3x2/L 2

3 H5 = 3(x/L) 2 -2 (x/l) 3

H 5' = 6x/L 2 - 6x'/L 3

H 6' = -x2/L + x3/L 2

H 6' = -2x/L + 3x2/L 2

(7.7)

their

.... (7.8)

Substituting equation (7.6) into equation (7.7) yields

L

Kgij = [P(

0

= P cos

cos 8 cos W' + sin 8 sinW') Hi'(x) Hj'(x) dx

L

0

cos W' Hi'(x)Hj'(x) dx

L

+ P sin 81sin W' Hi'(x)Hj'(x)dx

0

..... (7.9)

For the special case of pure rigid body rotation only

(W'(0) = W'(L) = 8 _ f(x)), equation (7.9) reduces to

L

Kgij = P(cos28 + sin28) IHi'(x)Hj'(x) dx

0
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L
r

= P IHi'(x)Hj'(X) dx
J

0

which yields the consistent Kg matrix.

Therefore, Kg using this formulation does not

possess rigid body rotation capability. It may be necessary

to include separate interpolating functions for the rotation

instead of the derivatives of the shape functions.

Consider the appropriateness of the Hermitian

polynomials for shape functions.

V -

r ]
{H2 H3 H5 H6}/u2 /

IIu3
u5
u6

For rigid body translation

u = u I = u 2 = constant = Q

= H 1 Q + H 4 Q

= (H I + H 4)

But, H 1 + H 4 = i, so the equality is satisfied.

Similarly, v = u 2 = u 5 = constant = 9

and u 3 = u 6 = 0.



9 = H 2 9 + H 5 0

9 = (H 2 + H 5) 9
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Since H 2 + H 5 = I, the equality is satisfied.

0 : dv/dx : {H 2' H 3' H 5' H6')

Iu2]u3

u5

u6

For rigid body rotation

^

8 = U 3 = u 6 = constant = 8

^

u 2 = -u 5 = -L sin 8/2

^ ^ ^ _ A

B = H 2' (-L sin 8)/2 + H 3' 8 + H 5' (L sin 8)/2 +H 6' B

^ A

= (H 5' - H2') L sin 8 /2 + (H 3' + H6') B

A A

For small angles, sin O _ 8. Therefore,

A

e = [(H 5' - H 2) L/2 + H 3' + H6'] e

8 = 0.

rotation.

Thus, the equality is satisfied during rigid body
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I
1 unit

I

P

Figure 7 Application of Unit Displacements to a Beam



Saunders' Methodology for

the Directed Force Problem

39

Saunders considers a beam with a horizontal load as

shown in Figure 7, and applies various unit displacements

to develop the stiffness matrices. This can be changed to a

directed force problem by letting

P _ P = P cos

and

V 1 _ V 1 = V 1 - P sin

as shown in Figure 8.

S(x) = V 1 - P cos ¢ dy/dx - P sin

= V - P cos _ y'

(V.lO)

M(x) = VlX + P cos ¢ (Yl - Yx)

= VIX + P cos _ (Yl - Yx)

- P x sin ¢ -

- M I

MI --(7.11)

Applying Saunders' methodology using equations(7.10) and

(7.11) for the general directed force problem yields



4O

I V1 _ V1 = V 1 - P sin

- _ _P COS

______ M(x)

-. ,

Figure 8 Directed Force Components
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Mx/EI = 8' x .......... (7.12)

y' + I_xX : 8X

\
Rotation due to shear strain

(7.13)

F x = -6x/K'AG (7.14)

S x = V I- P cos _ y' ..... (7.15)

Therefore,

F x = V 1 P cos _ y'
+

K'AG K'AG

_X = -

Vl

K'AG

P cos ¢(8 x + F x)

K'AG

I_X =

V1

K'AG

P cos ¢ e x
+

K'AG

P cos ¢ Px
+

K'AG

1

P COS

K'AG

V1

K'AG

P cos ¢ 8 x
+

K'AG



Let R = I-P cos _/K'AG
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F x =

" 2
Vl P cos ¢ ex

+

K'AGR K'AGR

(7.16)

Differentiate equation (7.16).

_X v =

P cos ¢ 8x'

K'AGR

But K'AGR = (K'AG) (i - P cos _ / K'AG)

= K'AG - P cos _.

Thus,

_X v -

P cos ¢ 8x'

K'AG - P cos

Let P = P cos _.

Then,

! v

F x = P 8 x /(K AG - P)

Differentiate Equation (7.13).

YX" = 8X' + FX'

' + P 8 '= 8X X /(K'AG - P)

= 8x'(l + P/(K'AG - P)) .... (7.17)
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Substituting Equation (7.11) into Equation (7.12) yields

vlx - M 1 + P cos _ (Yl - Yx)

El

Substitute into Equation (7.17).

= 8 x '

t!

Yx vl,MI.P yly, [1 + P/(K'AG -
EI

But

( 1 + P/K'AG - P) = (K'AG - P +P)/(K'AG - P)

= i/( 1 -P/K'AG)

Therefore,

VlX - M1 + P(Yl - Yx) ~

yx" = (I/(i - P/K'AG))
EI

Yx" + P Yx / EIR = (VlX - M 1 + P Yl) / EIR

Let B 2 = P / EIR

= B 2 B2/p + x/PYx + B2 Yx Yl - M1 V1 B2 (7.18)

The solution for Equation (7.18) is

Yx = C sin Bx + D cos Bx + Yl - MI/P + Vlx/P .... (7.19)



Differentiate Equation (7.19).
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Yx' = CB cos Bx - DB sin Bx + VI/P

Employing Equations (7.13), (7.14), and (7.15) yields

ex = Yx' - Px

= Yx' + s x / K'AG

= Yx' + (VI - P y')/K'AG

Substitution yields

8 x = C B cos Bx - D B sin Bx + VI/P

1

K'AG
IV 1 - P[C B cos Bx- D B sin Bx + VI/P ]

8 x = C B(I-P/K'AG) cos Bx - D B(I-P/K'AG) sin Bx + VI/P

8 x = C B R cos BX - D B R sin Bx + Vl/P (7.20)

Let Yl = I, and apply boundary conditions. (See Figure 9.)

y(o) = yl = 1

e(o) = el = 0

_(L) = Y2 = 0

8(L) = 82 = 0
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Yl

I

Vl

V2

I 1 !nit

M 2 P

Figure 9 Beam with Unit Displacement of Yl Only



Substitute 8(0) = 0 into Equation (7.20).

0 = C B R + VI/P

46

c : - vl/(P R)

Substitute 8(L) = 0 into Equation (7.20).

0 = C B R cos BL - D B R sin BL + VI/P

D B R sin BL : C B R cos BL + VI/P

n _

C cos BL

sin BL

Vl
+ ~

P B R sin BL

V 1 cos BL
m .. _

P B R sin BL

Vl
+~

P B R sin BL

n -

Vl

PB R

]

i - cos BLI .........

]sin BL

(7.23)

Similarly, solve equation (7.19) at x = 0.

Yl = D - M 1 + Yl

or

D - MI/P ............................. (7.25)



Solve Equation (7.19) when x = L.

0 = C sin BL + D cos BL + Yl - MI/P + VIL/P
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Yl = M1/P- VIL/P- C sin BL - D cos BL

Substituting Equation (7.25)

Yl = D - D cos BL - VIL/P- C sin BL

Yl = D(I - cos BL) - VIL/P- C sin BL (7.26)

Substituting the values for C and D from Equations (7.23)

and (7.22) yields

[11]E JV 1 - cos BL 1 - cos BL VIL V 1 sin BL

yl=~ -_+ ~
P B R sin BL P PB R

- cos 8L)2
Yl = P [ B R sin BL

sin BL]
-- L + (7.27)

B R

Yl = _I (I

- cos BL) - L B

B R sin BL R sin BL]

Let z = 2(1 - cos BL) - L B R sin BL



V 1 z

Yl = ~
P B R sin BL
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V 1 ~ ~ ~

KII = -- = V 1 P B R sin BL / VlZ

Yl

KII = PB R sin BL) / z

K21 -

M1

Y1

P V 1 (i - cos BL) PB R sin BL

(P B R sin BL v 1 z)

K21 = P (i - cos BL)/z.

Let 81 = 1 and apply boundary conditions. (See Figure I0).

y(0) : yl : o

e(o) = eI = I

y(L) = Y2 = 0

8(L) = e2 = 0

Yl = 0 = D - MI/P (7.28)

Therefore, D = MI/P ..................

Y2 = 0 = C sin BL + D cos BL - MI/P + VlX/P

- C sin BL + D(I - cos BL) = yL/P

(7.29)

(7.30)
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Vl

P cos ¢ t _--

(.
M1

V2

1
¢

Figure i0 Beam with Unit Rotation 81 and

Other Degrees of Freedom Fixed
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82 : 0 : C B R cos BL - D B R sin BL + Vl/P .... (7.31)

Therefore, C B R cos BL - D B R sin BL = -VI/P .... (7.32)

Solve Equations (7.30) and (7.32) simultaneously.

- sin BL 1 - cos BL ] [ C
B R cos BL - B R sin BL] D

V1 L/P

- V 1 L/P

C ----

L V 1 cot BL L V 1 V 1

P P sin BL P B R

(7.33)

VI[B L R sin BL -

P B R [ 1 - cos

1 + COS

BL

(7.34)

n "

V 1 (B L R cos BL - sin BL)

P B R (cos BL - i)

V 1 L R cos BL - sin BL
D = -- _

P B R 1 - cos BL

(7.35)

Using Equation (7.20) we get



81 = C B R + VI/P
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V 1 L R sin BL - 1 + cos B V 1

81 = - _------- _ _ + --_
P B R 1 cos BL P

81 =

V 1 1

P

- cos BL - B L R sin BL + 1 -

1 - cos BL cos BL]

81 = V 1 2 -

P

l

2 cos BL - B L R sin BL I

]1 - cos BL

V 1 z

81 - ~
P (i - cos BL)

KI2 = V1/81

KI2 = P (i - cos BL)/z

Equations (7.29) and (7.35) yield

_--MI= _ V1 [B L R c°s BL - sinBL][P P B R 1 - cos BL

S 1 = --

V 1 B L R cos BL - sin BL

B R 1 - cos BL
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K22 -

M1

81

V 1 B L R cos BL - sin (i - cos BL)

B R 1 - cos BL V 1 z

[ jP in BL

K22 = -- L cos BL = K44
z B R

The reaction can be obtained using static equilibrium.

V 2 = - V 1 ..............................

- M 1 - M 2 + V 1 L + P Yl - P Y2 = 0 --

(7.36)

(7.37)

or

M 2 = - M 1 + V 1 L + P Yl - P Y2 (7.38)

N

K31 = V2/Y 1 = - VI/Y 1 = - P(B R sin BL)/z

K31 = - P (B R sin BL)/z = KI3

K41 -

and

M 2 M 1 + V 1 L + P Yl - P Y2

Yl Y1

P(I - cos BL) P L (B R sin BL) P z
+ + --

Z Z Z

= P(-I + cos BL + B L R sin BL + 2 - 2 cos BL

- B L R sin BL)/z
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K41 = P (I - cos BL)/z = K14

K32 = V2/82 = - VI/81

1,e

K32 = - P (i - cos BL)/z = K23

Using Equation (7.39) yields K42.

K42 : M2/01 - (- Ml ÷ vz L ÷ P Yl - P Y2)/el

sin BL

= • --- + L cos BL + L(I - cos BL)

B R

K42 : -[P

- L

Z

sin BL 1 =

Similarly,

K33 = P(B R sin BL)/z

and

K34 = - P(I - cos BL)/z = K43

or, the final directed stiffness matrix is



P

K=--

Z

BR sin BL

1-cos BL

-BR sin BL

1-cos BL L

l-cos BL - BR sin BL 1-cos BL

sin BL
cos BL - 1 L

B R

BR sin BL cos BL-I

sin BL

cos BL-I Lcos BL

BR

sin BL

BR
-Lcos BL

cos BL-I

sin BL

BR

54

By inspection, K has rigid body translation capability.

For rigid body rotation (Figure II),

IL L ]URB R = - -- 8, 8, -- 8, 8
2 2

or

= [-L, 2, L, 2]

K2j " URB R = 0

Klj • URB R = - 2 8 cos BL - B L R 8 sin BL + 2 8

= 2 8 (i - cos BL)) - B L R 8 sin BL

O, No good.

This matrix does not possess rigid body rotation capability.

By observation, this [K] is identical with Saunders

[K], except P has been replaced with P cos _, which is the

component of P in the horizontal direction. It does not



55

possess rigid body rotation capability. It should also be

noted that the approximation for shear v I -" v I was used to

determine the stiffness coefficients. Without that

approximation the stiffness coefficients would be a function

of the shear.

ie.

KII =

V 1 P B R sin BL

(V 1 - P sin ¢) z

^ P (B R sin BL)

Lim KII = = KII
_--_ 0 z
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Figure ii Rigid Body Rotation



CHAPTER 8

MATRIX DEVELOPMENT USING GALERKIN CRITERION

Consider a simply-supported beam with an axial load.

The differential equation for static displacement is

E I d4W/dx 4 = O.

.G

Let W : Z _i(x) W i

Shape functions Nodal displacements

Application of Galerkin's criterion yields

x2

J d4 wEI _j(x) dx = 0
dx 4

xl ..

Integrate by parts

Let U = _j dV =

d4W

dx 4
dx

d_j
du - --

dx

dx V ----

d3W

3
dx

57
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x2 j2
d3W !

El Cj (x)- - EI

dx3 1 Xl

dCj d3w

dx dx 3
dx = 0

Integrate by parts.

Let U = _j'

dU = _j" dx

x2 T2T2d3W I d_j d2W

EI _j(x) -- - El + EI
dx 3 dx dx 2

Xl Xl Xl

d2_j d2w

dx 2 dx 2
dx

The first two terms are part of the boundary conditions.

The last term produces the elastic stiffness matrix.

[Ke] =

L

I EI ¢i" Cj" dx

0

L
P

[Xe] --I EI
.J

0

H2"H2"

H3"H2"

H5"H2"

H6"H2"

symmetric

H3"H3"

Hs"H3" H5"H5"

H6"H3" H6"H5" H6"H6"

dx

If the Hermitian polynomials are chosen for the shape

functions, the resultant matrix is
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[Ke] = EI

0

0 12/L 3

o S/L 2

0 0

0 -12/L 3

0 6/L 2

4/L

0 0

-6/_. 2 o

2/L o

Syn_et r i c

4/L

This [K E] has four zero eigenvalues. Note that the Kll,

K14, K41, and K44 terms are zero, since we did not develop

the relationship for the axial terms. Development of these

terms using a standard Bernoulli formulation yields the

appropriate terms. If the AE/L terms are developed via

a classic Bernoulli formulation, the resulting matrix has

three zero eigenvalues.

For an axially-loaded beam, the static deformation equation

becomes

d4W d2W

EI -- + P -- = 0
dx 4 dx 2

Application of Galerkin's criterion yields



L

0

d4W d2W

EI _j -- + P .--
dx 4 _dx 2

dx = 0

The first term produces [Ke] as shown previously.
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Integrate the second term by parts.

Let u = Cj dv =W"

dU = #j'dx V = W'

L L L

P Cj -- dx = P Cj -- - P Cj' --
dx 2 dx dx

0 0

dx

The second term on the right hand side produces the

geometric stiffness matrix.

L

[Kg] -P J.¢i' Cj' dx

0

L

[Kg]-P I

0

r
!HI'H 1 '

H2'H 1 ' H2'H 2 '

H3'H 1 ' H3'H 2 '

H4'H 1 ' H4'H 2 '

H5'H 1 ' H5'H 2 '

H6'H 1 ' H6'H 2 '

H3'H 3 '

H4'H 3 '

H5'H 3 '

H6'H 3 '

symmetric

H4'H 4 '

H5'H 4 '

H6'H 4 ' H6'H 6 '

dx
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Choosing the Hermitian Polynomials for the shape functions

yields

[Kg] = P

I/L

I/L 6/5L

0 ZlZO

-Z/L -Z/L

-I/L -6/5L

0 Z/ZO

symmetric

2L115

0 IIL

-iii0 IIL 615L

-LI30 0 -III0 2L/Z5

Recall that the KI, j, K4,j,Ki,I,Ki,4 were all zero

in the consistent geometric stiffness matrix. When 1/2

angle of rotation equals one radian, this [Kg] agrees with

the modified [Kg] developed by Bosela in [2]. Hence, it

possesses the required three zero eigenvalues. It should

also be noted that these new terms are not directly

attributable to the differential equation.

It should be noted that the consistent [K el matrix,

which has three zero eigenvalues, is utilized along with the

modified [Kg], which also has three zero eigenvalues, in an

equation of the form

I [[Ke] + P [Kg] ] - R2 [M] I = 0 ,

There are on|y two zero eigenvalues, corresponding

to rigid body translations. Apparently, the third zero



62

eigenvalue, corresponding to rigid body rotation, is lost,

due to differences in the rotation eigenvector produced.

For example, consider the free free beam shown in

Figure 12. When E= 0 (so that [Ke] is not calculated, and

only [K] = [Kg] is assembled) and P= 10xl0 6 LBS, the

following results are obtained (using the computer program

MODFINITE.FOR:

Lambda (i) =

Omega (i) =

The associated eigenvector is:

0.1000000000D+01

-0.I000000020D+01

0.2000000039D-01

-0.9999999973D÷00

0.9999999829D+00

0.2000000039D-01

Lambda (2) =

Omega (2) =

The associated eigenvector is:

0.1000000000D÷01

0.1166342998D+01

0.6138287495D-09

0.9999999386D+00

0.1166343060D+01

0.6138287603D-09

-0.0010

0.0000 RAD/S

0.0000

0.0000 RAD/S
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1 2

P o o
i00'

2
A = 48 in

4
I = i000 in

m = 0.03525 Ib-sec2/in 2

Figure 12 Free/Free Beam with Axial Compression Load



Lambda (3) :

Omega (3) =

The associated eigenvector is:

0

-0

-0

0

-0

-0

1000000000D+01

8573806678D+00

5222345200D-09

I000000052D+01

8573807200D+00

5222345360D-09

Lambda (4) =

Omega (4) =

The associated eigenvector is:

0

0

0

-0

-0

0

1000000000D+01

6229578457D+00

2524505863D+01

1000000000D+01

6229578457D+00

2524505863D-01

0.0000

0.0000 RAD/S

552496.2879

743.3009 RAD/S
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Lambda (5) =

Omega (5) =

The associated

1702127.6596

1304.6561 RAD/S

eigenvector is:

-0.1266228240D-15



0.1000000000D+01

-0.6000000000D-OI

0.1342393452D-15

0.1000000000D+01

0.6000000000D-01

Lambda (6) =

Omega (6) =

The associated eigenvector is:

0 1000000000D+01

0 1337704207D-02

-0 1505245050D-01

-0 I000000000D+01

-0 1337704207D+02

-0 1505245050D+01

4894312.1933

2212.3092.RAD/S
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It can also be shown that the eigenvectors are linear

combinations of the rigid body translations,

[i 0 0 1 0 0] T

[o z o o z o] T

and [L -L 2 -L L 2] T, which represents rigid body rotation

with 1/2 angle or rotation equal to one radian.

6
Assuming P=O and E= 30x10 psi, the following

results (once again using MODFINIT.FOR) are obtained:
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= 0 yields

Lambda (I) =

Omega (i) =

The associated

0.0000

0.0000 RAD/S

eigenvector is:

0.1000000000D+01

0.0000000000D+00

0.0000000000D+00

0.1000000000D+01

0.0000000000D+00

0.0000000000D+00

Lambda (2) :

Omega (2)

The associated

0.0000000000D+00

0.9334669755D+00

0.6653302446D-03

0.0000000000D+00

0.1000000000D+01

0.6653302446D-03

0.0000

0.0000 RAD/S

eigenvector is:



Lambda (3) : 0.0000

Omega (3) : 0.0000 RAD/S
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The associated eigenvector

0.0000000000D+00

0.1000000000D+01

-0.1977319320D-01

O.0000000000D+00

-0.9773193204D+00

-0.1977319320D-01

is:

Lambda (4) =

Omega (4) =

6127659.5745

2475.4110 RAD/S

The associated eigenvector

0.0000000000D+00

0.1000000000D÷01

-0.6000000000D-01

0.0000000000D+00

0.1000000000D+01

0.6000000000D-01

is:

Lambda (5) =

Omega (5) =

49021276.5957

7001.5196 RAD/S

The associated eigenvector

O.IO00000000D+OI

O.O000000000D+O0

O.O000000000D+O0

is:



-0.1000000000D+01

0.0000000000D+00

0.0000000000D+00
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Lambda (6) =

Omega (6) =

71489361.7021

8455.1382 RAD/S

The associated eigenvector is

0.0000000000D+00

0.1000000000D+01

-0.1200000000D+00

0.0000000000D+00

-0.1000000000D+01

-012000000000D+00

Once again, the first three eigenvectors can be

shown to be linear combinations of rigid body translational

modes.

[i00 i00] T

[010 010] T

and the rigid body rotation vector

[ 0 -L 2 0 L 2]

Considering the same beam, with P=I0XI0 6 Ibs and

6
E=30Xl0 , the following results are obtained from

MODFINIT.FOR.



liKe] + P[Kg] - _2[M] I : 0

Lambda (i) =

Omega (I) =

-0.0688

0.0000 RAD/S
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The associated eigenvector is:

0.1000000000D+01

-0.1000000016D+01

-0.1577675514D-15

0.1000000000D+01

-0.1000000016D+01

-0.3281352645D-15

Lambda (2) = 0.0688

Omega (2) = 0.2622 RAD/S

The associated eigenvector is:

0 1000000000D+01

-0 9999999841D+00

-0 1577674314D-15

0 1000000000D+01

-0 9999999841D+00

-0 3281350580D-15

Lambda (3) =

Omega (3) =

403295.7555

635.0557 RAD/S

The associated eigenvector is:

0.1000000000D+01



-0.I066270395D+01

0.1239429315D-02

0.I000183829D+01

-0.9339134336D+00

0.1239429315D-02

7O

Lambda (4) =

Omega (4) =

The

0

-0

-0

0

-0

0

associated

1000000000D+01

3571250023D+00

3857249986D-01

1000000000D÷01

3571250023D+00

3857249986D-01

Lambda (5) =

Omega (5) =

7829787.2340

2798.1757 RAD/S

eigenvector is:

76419084.4813

8741.8010 RAD/S

The associated eigenvector

0.1000000000D+01

-0.7447662297D+01

0.7700947165D+00

0.I017885331D+01

0.5429776966D+01

0.7700947165D+00

is:



Lambda (6)

Omega (6)

: ********************

: 248742850249.1149 RAD/S
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The associated eigenvector is:

0 1000000000D+01

-0 1000000000D+01

0 2272727273D-01

-0 1272727273D+01

0 1272727273D+01

0 2272727273D-01

If the [Ke] matrix generated by the Galerkin method

(which has 4 zero eigenvalues) is used along with modified

[Kg] from Galerkin (which has three zero eigenvalues), the

combined stiffness yields three zero eigenvalues.

The results are obtained from BOFINITE.FOR:

l[[Ke] + P[Kg] - e2[M]]} : 0

yields

Lambda (i) = -0.0010

Omega (I) = 0.0000 RAD/S

The associated eigenvector is:

0.1000000000D+01

-0.9999995972D+00

0.1999999995D-01

-0.9999999870D+00



0.I000000396D+01

0.1999999995D-01
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Lambda (2) =

Omega (2) =

0.0000

0.0000 RAD/S

The associated eigenvector

0.1000000000D+01

0.1686129333D+02

-0.2021558453D-06

0.I000000396D+01

0.1999999995D-01

is"

Lambda (2) =

Omega (2) =

0.0000

0.0000 RAD/S

The associated eigenvector

0.1000000000D+01

0.1686129333D+02

-0.2021558453D-06

0.I000020216D+01

0.1686127311D+02

-0.2021558449D-06

is:

Lambda (3) =

Omega (3) =

0.0000

0.0000 RAD/S

The associated eigenvector is:

0.I000000000D+01



-0.5930809082D-01

0.5153549492D-09

0.9999999485D+00

-0.5930803928D-01

0.5153549432D-09
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Lambda (4) =

Omega (4) =

673695.6482

820.7896 RAD/S

The associated eigenvector is:

0.1000000000D+01

0.9739809665D+00

-0.1747771626D-01

-0.1000000000D+01

-0.9789809665D+00

-0.1747771626D-01

Lambda (5) =

Omega (5) :

7829787.2340

2798.1757 RAD/S

The associated eigenvector is:

0.2801487156D-16

0.1000000000D+01

-0.6000000000D-01

-0.2859899241D-16

0.I000000000D+01

0.6000000000D-01



Lambda (6) = 76262474.5352

Omega (6) = 8732.8389 RAD/S

The associated eigenvector is:

0.1000000000D+01

0.2230210189D+03

-0.2666252228D+02

-0.1000000000D+01

-0.2230210189D+03

-0.2666252228D+02
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Next consider the equation of motion

d4w d2W d2w

EI-- + N-- + m-- = 0
dx 4 dx 2 dt 2

The first two terms have already been examined.

consider only the term m d2W/dt 2.

Let W = 2 _i(x) W i

and "

Now

w(x,t) = ¢(x) sin at

(d/dr)

(d2/dt 2)

w(x,t) = ¢(x) _ cos at

W(x,t) = - ¢(x) g2 sin at

= _ g2 w(x,t)

Apply Galerkin's criterion
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L
f

[M] - 6 A J
J

0

HIHI

H2HI H2H 2

H3HI H3H2 H3H 3

H4HI H4H 2 H4H 3

H5HI HSH 2 HsH 3

H6HI H6H 2 H6H 3

symmetric

H4H 4

H5H4 H5H 5

H6H4 H6H5 H6H6

Once again, selecting the Hermitian polynomials for the

shape functions yields

5 A L

[M] =
420

140

147 156

21L 22L

70 63

63 54

-14L -13L

4L 2

14L

13L

-3L 2

symmetric

140

147 156

-21L -22L 4L 2

Note that the M12, M13, M15, M16 , etc. are zero in

the consistent mass matrix, and not directly attributable to

the differential equation used.

In order for finite element dynamic analysis

alorithims to provide solutions, the mass matrix must always
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be positive definite. To test whether the mass matrix would

be positive definite, consider the following:

Let m = 0.03525 LB Sec2/IN 2

L = i0 IN

The mass matrix becomes

[M]=

0.1175 0.1234 0.1762 0.05875 0.05287 -0.1175

0.1234 0.1309 0.1846 0.05287 0.04532 -0.1091

0.1762 0.1846 0.3357 0.1175 0.1091 -0.2518

0.05875 0.05287 0.1175 0.1175 0.1234 -0.1762

0.05287 0.04532 0.1091 0.1234 0.1309 -0.1846

-0.1175 -0.1091 -0.2518 -0.1762 -0.1846 0.3357

A positive definite matrix has al I positive

eigenvalues. Solving the algebraic eigenvalue problem,

I[M] - [I]I : 0 yields

" --5

Eig.1 = -3.50 x 10

Eig. 2 = 1.41 x 10 -2

Eig.3 = 9.02 x 10 -1

-5
Eig.4 = -4.61 x 10

-i
Eig. 5 = 2.14 x 10

-2
Eig. 6 = 3.83 x i0

The negative eigenvalues indicate that this particular mass

matrix is not positive definite.



CHAPTER9

SAMPLE PROBLEMS

Fertis and Lee [19] developed the equations of

motion and obtained rigorous solutions for beams with

various loading and end conditions. The Galerkin method can

be used to generate stiffness and mass matrices for a finite

element application, and the results compared with Fertis

and Lee's rigorous solution.

The following beams were considered:

a. Axially-loaded beam on simple supports.

b. Axially-loaded beam with vertical spring supports.

C • Axially-loaded beam with horizontal and vertical

support springs•

d. Bow-string

It should be noted that Fertis and Lee's analysis

indicate regions of dynamic "flutter" instability, which has

not previously been identified. Kounadis [20] has

identified similar areas in the stability analysis of beams

with follower forces.
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Case a. Axially-loaded Beam on Simple Supports
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Fertis and Lee [19] develop the general equation of

motion in the form

-- EI(x) --w, + 6A(x) P
dx 2 dt 2 dx 2

d[d31- 6 -- Ix 2dx
d x dt

= o (9.1)

If a beam with a constant cross-section is considered, EQ

(9.1) reduces to

d4y d2y d2y d4y

EI + 6A P - 6I = 0 (9.2)

dx 4 dt 2 dx 2 dt2dx 2

It can easily be seen that the first three terms of

EQ (9.2) yield K E, M, and Kg matrices previously developed

using Galerkin criterion, (with the negative sign on the

third term indicative of an axial compression load).

Consider the fourth term.

&21 d4y

K'G dt2dx 2



Let R : _ _i(x) W i

and

wCx,t):¢(x) sin _t

d

W = ¢(x) o Cos ot
dt
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d 2

W = -_(x)R 2 Sin Rt
dt 2

d 2

w : _R2 W(x,t)
2

dt

d 4

dx2dt 2

d 2

w : _R2 __ w (x t)
dx2

Comparison with term #3 indicates that the fol]owing

higher order matrix is produced:

- o

Z/L

1/L 6/5L

0 z/zo
.

-z/L -z/L

-I/L -6/5L

o z/zo

SYMMETRIC

2L/15

o z/L

-1/lO 1/L 6/5L

-L/3o o -z/zo 2L/15

The Kij, K4j, Kil, and Ki4 terms could be set equal to zero,

(corresponding to more traditional development) since they

are not explicitly developed using the differential

equation.



Case b.
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Axially-loaded Beam with Vertical Spring Supports

Fertis and Lee [19] have utilized Hamilton's principle

and the dynamic equilibrium method to formulate the

characteristic equations for a beam with an axial

compression load and vertical spring supports. They have

solved for the frequencies of vibration for various

parameters utilizing a bisection method, and tabulated the

results.

Using Galerkin's criterion, stiffness and mass

matrices can be generated, formulated into a finite element

algorithm, and the finite element solution compared with

Fertis and Lee's rigorous solution.

Fertis and Lee's analysis indicates that regions of

dynamic ("flutter") instabilities occur for an axially-

loaded beam with spring supports. The modified finite

element approach provides correlation with the trial and

error procedure.

The differential equation developed by Fertis and Lee

[19] is

,d4y EI 6 d4y

El -- - - ,
dx 4 K G dx2dt 2 [* K'5 I G d4y d4y

K'G dx2dt 2 & --dr4

(i) (2) (3) (4)

d 2 p d2y

+m_t 2 4 dx 2

(s) (6)

(9.3)



with I = I/(I+P/K'AG)
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Term (i) yields

[Ke] = EI*

12/L 3

6/L 2

-12/L 3

6/L 2

4/L

-6/L 2

2/5

symmetric

12/L 3

2
-6/L 4/L

Terms (2) and (3) yield

[ J6EI*

[KROT] = + 61"
K'G

6/5L

1/lO

-6/5L

i/lO

2L/15

-1/1o

-L/30

symmetric

12/53

-6/L 2 4/L

Term (4) yields

[MI] =

&21 *

420 K' G

156

225

54

-135

2
4L

13L

-3L2

156

-22L 4L 2

Term (5) yields
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6 A L
[Mo] -

420

156

22L

54

-13L

4L 2

13L

-3L 2

symmetric

156

-22L 4L 2

Term (6) yields

[Kg] = P

6/5L

1/10

-6/5L

I/io

symmetric

2L/15

-i/i0 6/5L

-L/30 -i/i0 2L/15

In matrix form, EQ (9.3) yields

[KE] ÷ P[KG]] - 02 [[Mo]- [KROT]]+ o4[Ml]: 0
.... (9.4)

The above matrices were included in a finite element

4
dynamic analysis program (NLFIN.FOR), neglecting the W

term. Tables 2-6 compare the finite element output with

Fertis and Lee's rigorous solution of the dynamic

instability loads.
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Table 2 Free/Free Beam with Pre-Load

o
K=0 K=0

A = 48 IN 2 m = 0.4224 LB-SEC2/IN 2

E = 30 x 106 L = 100 IN

I = 256 IN 4 K'= 0.186

AXIAL

LOAD

-400

-200

0

200

400

IK/M

NLFIN3

IST FREQ

ERROR

RIGOROUS

2ND FREQ

1.0670 i

0.7545 i

0

0.7545

1.0670
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Table 3 Rigorous Solution Versus NLFIN3.FOR

P P

K=10 LB/IN

A = 48 IN 2

6
E = 30 x i0

I = 256 IN 4

AXIAL

COMP

LOAD

0

100

2OO

3OO

355

[K/M

0.688

0.688

0.688

0.688

0.688*

RIGOROUS

IST FREQ

RAD/SEC

0.689

0.689

0.689

0.689

0.689*

K=I0 LB/IN

m = 0.4224

L = I00 IN

K'= 0.186

% RIGOROUS

0.01 1.189

0.01 1.063

0.01 0.921

0.01 0.752

0.0 0.689*

NLFIN3

IST DIFF. 2ND FREQ

FREQ.

0.6881

0.6881

0.6881

0.6881

0.6881

LB-SEC2/IN 2

NLFIN3 %

2ND FREQ DIFF

1.1930 0.34

1.0670 0.38

0.9241 0.34

0.7545 0.33

0.6881 0.13

*Flutter (dymanic instability) occurs.
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Table 4 Rigorous Solution Versus NLFIN3.FOR

P

o
K=I00 LB/IN

A = 48 IN 2

E = 30 X I0

I = 256 IN 4

!IK/M

AXIAL

COMP

LOAD

0

500

i000

1500

2000

2500

3000

3350

2.17

2.17

2.17

2.17

2.17

2.17

2.17

2.17

RIGOROUS

1ST FREQ

RAD/SEC

P

6 2.177

6 2.177

6 2.177

6 2.177

6 2.177

6 2.177

6 2.177

6 2.177"

K=100 LB/IN

m = 0.4224 LB-SEC2/IN 2

L = i00 IN

K'= 0.186

NLFIN3 % RIGOROUS

IST DIFF 2ND FREQ

FREQ

2.176 0 3.758

2.176 0 3.565

2.176 0 3.362

2.176 0 3.144

2.176 0 2.911

2.176 0 2.658

2.176 0 2.377

2.176 0 2.177"

* Flutter (dynamic instability) occurs.

NLFIN3

2ND FREQ

3.7725

3.5789

3.3742

3.1563

2.2922

2.6676

2.3859

2.1671

%

DIFF

0.39

0.39

0.36

0,37

0,38

0.36

0.37

-0.45



86

Table 5 Rigorous Solution Versus NLFIN3.FOR

P P

K=500 LB/IN K=500 LB/IN

A = 48 IN 2

E = 30 x 106

AXIAL

COMP

LOAD

0

i000

2000

3000

4000

5000

6000

7000

I = 256 IN 4

K'= 0.186

[K/M

4.866

4.866

4.866

4.866

4.866

4.866

4.866

4.866

RIGOROUS

1ST FREQ

RAD/SEC

4.877

4.877

4.877

4.877

4.877

4.877

4.877

4.877

NLFIN3

1ST FREQ

4.863

4.863

4.863

4.863

4.863

4.863

4.863

4.863

8000 4.866

9000 4.866

10000 4.866

11000 4.866

12000 4.866

13000 4.866

14000 4.866

15000 4.866

16000 4.866

16550 4.866

4.877

4.877

4.877

4.877

4.877

4.877

4.877

4.877

4.877

4.877*

4.863

4.863

4.863

4.863

4.863

4.863

4.863

4.863

4.863

4.863

m = 0.4224 LB-SEC2/IN 2

L = i00 IN

% RIGOROUS

DIFF 2ND FREQ

0.06 8.402

0.06 8.232

0.06 8.057

0.06 7.882

i0.06 7.701

10.06 7.510

0.06 7.325

0.06 7.130

0.06 6.929

0.06 6.722

0.06 6.509

0.06 6.288

0.06 6.059

0.06 5.822

0.06 5.315

0.06 5.315

0.06 5.024

0.06 4.877*

NLFIN3 %

2ND FREQ DIFF

8.4350 0.39

8.2646 0.40

8.0907 0.42

7.9128 0.39

7.7309 0.39

7.5446 0.46

7.3536 0.39

7.1575 0.39

6.9559 10.39

6.7482 0.39

6.5339 0.38

6.3124 0.39

6.0828 0.39

5.8422 0.38

5.3350 i0.38

5.3350 0.38

5.0612 0.74

4.9042 0.56
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Table

a "

E :

I =

6 Rigorous

O O

u

K=I000 LB/IN

48 IN 2

6
30 x i0

256 IN 4

Solution Versus NLFIN3.FOR

P

O

K=I000 LB/IN

m = 0.4224

L = i00 IN

K'= 0.186

LB-SEC

AXIAL

COMP

LOAD

0

5000

i0000

15000

20000

25000

30000

31000

33501

JK/M

6.881

6.881

6.881

6.881

6.881

6.881

6.881

6.881

6.881"

IST

FREQ

RAD/SEC

.876

.876

.876

.876

.876

.876

.876

.876

.876*

IST

FREQ

6.874

6.874

6.874

6.874

6.874

6.874

6.874

6.874

6.874

DIFF

0.i0

0.I0

0.i0

0.i0

0.i0

0.i0

0•i0

0.i0

0.i0

2ND FREQ

Ii

ii

i0

9

9

8

7

7

6

.882

.272

• 628

•941

.294

•402

•516

.325

.876*

2ND

ii

ii

Ii

9

FREQ

.9282

.3162

.6692

.9802

9•2400

8.4350

7.5446

7.3536

6.8526

DIFF

0.39

0.39

0.39

0.39

-0.58

0.39

0.38

0.39

-0.34

* Flutter (dynamic instability) occurs.
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NLFIN3 has excellent correlation with rigorous

solution (See Tables 3-6). However, the rigorous solution

has the 2nd frequency varying with axial load, even when

K=0. Thus, it does not model rigid body rotation. NLFIN3

was developed from the differential equation in the rigorous

solution, using Galerkin's criterion. Thus, it also has the

2nd frequency varying with the axial load, and does not have

rigid body rotation capability. Table 7 compares the

critical load obtained using the finite element method

versus the rigorous solution for varying spring stiffness.

Tables 8-10 compare the frequencies for constant spring

stiffness but varying lengths.

The critical loads correspond to a coalescing of the

first and second flexural eigenfrequencies (dynamic

instability) and were located by varying the load.

Correlation between the finite element and rigorous solution

is evident. The difference is affected by the judgment as

to when the first two frequencies have sufficiently

coalesced, the excluding of the _4 contribution in the

finite element algorithm, the number of elements used, and

errors due to the iterative nature of the eigensolver

routine.

It should also be noted that in general, as the

axial compression load is increased, the second eigenvalue

decreases. The first eigenvalue does not change
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Table 7 Critical Load Rigorous Solution Versus NLFIN3

A = 48 IN2 I = 256 IN 4 m = 0.4224 LB-SEC2/IN

E = 30 x 106 K'= 0.186 L = 100 IN

SPRING CRITICAL LOAD (LB)

CON STANT R IGOROUS NFL IN 3 D IFF

10

100

500

1000

2000

3000

5000

10000

20000

60000

80000

100000

120000

140000

147000

150000

200000

300000

400000

500000

3.35 X 102

3.35 X 103

1.655 X 104

3.100 X 104*

6.600 X 104

9.550 X 104

1.605 X 105

3.345 X 105

6.75 X 105

2.105 X 106

2.98 X 106

3.899 X 106

4.858 X 106

6.250 X 106

7.000 X 106

7.450 X 106

7.450 X 106

7.450 X 106

7.450 X 106

7.450 X 106

3.335 X 102

3.335 X 103

1.6675 X 104

3.335 X 104

6.670 X 104

1.0025 X 105

1.6708 X 105

3.3722 X 105

6.8141 X 105

2.1523 X 106

2.9649 X 106

3.8548 X 106

4.8700 X 106

6.1600 X 106

6.7850 X 106

7.1400 X 106

7.6400 X 106

7.6400 X 106

7.6400 X 106

7.6400 X 106

-0.4

-0.4

0.8

7.6

1.1

5.0

4.1

0.8

0.9

2.2

-0.5

-1.1

0.2

-1.4

-3.1

-4.2

2.6

2.6

2.6

2.6
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Table 8 Natural

A = 48 2

E = 30 x 106

Frequency Versus Length

o _- P

I = 256 IN 4 m = 0.4224

Spring

LENGTH

31

32

34

40

42

44

46

48

5O

60

7O

8O

100

110

160

200

210

260

270

275

LB-SEC2/IN 2

K'= 0.666 P = 1,000,000 Ib

constant K = 100,000 LB/IN

NLFIN3 % RIGOROUS

1ST FREQ DIFF 2ND FREQ

123.188 0.0 123.18

121.208 0.1 125.57

117.505 0.1 127.653

108.040 0.i 130.602

105.320 0.1 130.671

102.772 0.1 130.470

100.377 0.I 130.042

98.119 0.1 129.461

95.982 0.1 128.757

86.726 0.1 124.222

79.138 0.2 119.115

72.596 0.2 114.079

61.328 0.4 104.831

56.247 0.4 100.641

34.340 0.8 82.686

21.147 1.2 70.114

18.420 1.3 67.070

6.632 4.8 52.364

3.892 13.5 49.577

1.742 -- 48.211

NLFIN3

2ND FREQ

128.860

130.254

132.193

134.802

134.148

133.347

132.445

132.437

131.449

125.956

120.344

115.032

105.574

101.376

83.882

72.098

69.288

55.738

53.140

51.860

IRIGOROUS

1ST FREQ

123.18

121.140

117.439

107.961

105.235

102.683

100.284

98.022

95.880

86.602

78.990

72.424

61.110

56.009

34.069

20.903

18.182

6.329

3.430

0

%

DIFF

4.6

3.7

3.6

3.2

2.7

2.2

1.8

2.3

2.1

1.4

1.0

0.8

0.7

0.7

1.4

2.8

3.3

6.4

7.2

7.6
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Table 9
P

Natural Frequency
o

Versus Length

E = 30 x 106

I = 256 IN 4

K'= 0.666

p

m = 0.4224 LB-SEC2/IN 2

P = 1,000,000 Ib

Spring constant K = 50,000 LB/IN

LENGTH RIGOROUS NLFIN3 % RIGOROUS

1ST FREQ

62.023

60.977

59.889

58.885

57.919

56.987

56.087

55.217

54.374

53.555

52.760

51.986

51.232

49.777

49.074

45.756

34.326

24.118

10.687

0

1ST FREQ DIFF 2ND FREQ

61.784 0.4 62.023

60.972 0.0 63.197

59.930 0.i 63.969

58.928 0.1 64.585

57.964 0.1 65.070

57.034 0.1 65.445

56.136 0.1 65.726

55.268 0.1 65.928

54.427 0.1 66.061

53.610 0.1 66.137

52.817 0.1 66.161

52.046 0.1 66.143

51.294 0.1 66.086

49.843 0.i 65.880

49.143 0.1 65.737

45.838 0.2 64.752

34.462 0.4 59.105

24.296 0.7 53.160

10.910 2.1 44.393

1.741 -- 39.143

60.5

62

64

66

68

70

72

74

76

78

80

82

84

88

90

100

140

180

240

275

NLFIN3

2ND FREQ

63.316

63.808

64.546

65.132

65.590

65.939

66.197

66.376

66.490

66.546

66.554

66.520

66.449

66.218

66.064

65.082

59.418

53.651

45.492

40.768

%

DIFF

2.1

1.0

0.9

0.8

0.8

0.8

0.7

0.7

0.6

0.6

0.6

0.6

0.5

0.5

0.5

0.51

0.5

0.9

2.5

4.2
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Table
P

E "

10 Natural Frequency Versus

_N o
48 2 I = 256 IN 4

30 x 106 K'= 0.666

Spring constant K = 25,000

RIGOROUS

1ST FREQ

30.529

29.676

28.835

28.015

27.212

26.421

25.640

24.886

24.095

23.326

22.557

21.786

20.231

18.652

17.043

NLFIN3

IST FREQ

30.4991

29.7156

28.8787

28.0628

27.2636

26.4774

25.7010

24.9315

24.1661

23.4026

22.6390

21.8734

20.3305

18.7644

17.1689

LENGTHI

13.718

11.988

10.192

6.164

0

13.8721

12.1592

10.3844

6.4413

1.7385

115.45

120

125

130

135

140

145

150

155

160

165

170

180

190

200

Length

m = 0. 4224

P =

LB/IN

% R IGOROU S

DIFF 2ND FREQ

0.I 30.529

0.i 31.269

0.2 31.827

0.2 32.243

0.2 32.547

0.2 32.759

0.2 32.897

0.2 32. 974

0.3 33.000

0.3 32.983

0.4 32.931

0.4 32.848

0.5 32.608

0.6 32.291

0.7 31.915

1.1 ! 31.032

1.4! 30.539

1.9 30. 019

4.5 28.610

-- 28.211

220

230

240

260

275

LB-SEC2/IN 2

1,000,000 lb

NLFIN3

2ND FREQ

30.6904

31.3525

31.9097

32.3257

32.6295

32.8430

32.9829

33.0624

33.0919

33.0797

33.0326

32.9560

32.7313

32.4328

32.0793

31.2548

30.7994

30.3215

29.3091

28.5057

%

DIFF

0.5

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.7

0.7

0.9

1.0

2.4

1.0
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considerably. When the first two frequencies coalesce,

dynamic (flutter) instability occurs.

NFLIN3 has excellent correlation with the rigorous

solution. However, the rigorous solution has the 2nd

frequency varying with axial load, even when K=0. Thus, it

does not model rigid body rotation. NLFIN3 was developed

from the differential equation in the rigorous solution,

using Galerkin's criterion. Thus, it also has the 2nd

frequency varying with the axial load, and does not have

rigid body rotation capability.

Case c. Axially-loaded Beam with Horizontal and

Vertical Support Springs

This beam was analyzed using a two-element

formulation, and the results tabulated in Table ii. There

is excellent correlation between the critical load obtained

using finite element model and the rigorous solution.

A four-element model was also used, and the results

tabulated in Table 12. Once again, there is excellent

correlation between the frequencies of vibration obtained

using the finite element model with the rigorous solution.

It should be noted that for this particular problem,

flutter does not occur. Instead, instability occurs when

the natural frequency drops to zero.
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Table 11 Vibration of an Axially-loaded Beam with

Horizontal and Vertical Springs

x-x O

Kh Kh

v o
K h = 10 x 106 LB/IN

K v = 400 X 103 LB/IN

L = i00 IN

A = 48 IN 2

I = 256 IN 4

E = 30 X 106 PSI

m = 0.4224 LB-SEC2/IN 2

LOAD

(LB)

0

7,600,000

7,610,000

7 ,630,000

7,640,000

7,635,000

7,560,000

1ST FREQUENCY

USING NLFIN5

(RAD/S)

93.38

9.27

7.92

4.01

2.71 i

2.09

1ST FREQUENCY

RIGOROUS SOL

(RAD/S)

0

% DIFF. =
7,637,000-7,560,000

-1.0%

7,560,000
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Tabl e 12 Vibration of Axially-loaded Beam

with Horizontal and Vertical Springs

Using 4 elements

Xo=0.0

P=0.0

Freq.

1

2

3

Rig (RAD/SEC)

97.8920

221.4823

385.4009

Modfin 3

98.1914

224.4996

419.3890

% Diff.

0.3

1.4

6.0

X o = 0.225 IN

P = 2,250,000 LB

Freq

1

2

3

Rig (RAD/SEC)

82.1998

214.0995

387.5971

Modfin 3

88.8739

212.0427

389.7464

% Diff.

8.1

1.0

0.6



Case d. Bowstring
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Finally, consider a beam which has a spring

connected between the end nodes, such that the force in the

spring is always directed between the end nodes. (See Figure

13).

The differential equation for the bowstring developed by

Fertis, is

#I #2 #3 #4 #5 #6

,d4y d4y

EI -- -6 - 0
dx 4 dt 4

EI*+I* t-_+ p - dx -?--_+6 2I*
_G dx2dt 2 dx K'G

0

.... (9.s)

Where

I : II(I+P/K'AG)

K' = Shear Coefficient (shape factor)

c = Spring Constant
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p

C

p

Figure 13 Bowstring Problem



Consider term #i.
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d4y

EI* --

dx 4

As done previously, applying the Galerkin criterion yields

[Ke]=EI

12/L 3 6/L 2 -12/L 3 6/L 2

6/L 2 4/L -6/L 2 2/L

-12/L 3 -6/L 2 12/5 3 -6/L 2

6/5 2 2/5 -6/L 2 4/5

Now consider the shear and rotatory inertia effects.

Consider the term

d 4 y

dx2dt 2

Let W(x,t) = 2_(x) sin _t

d4w

= ¢(x)
dx2dt 2

d2w

dx 2



Apply Galerkin's criterion
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x2

I d2 W_¢2 Cj __
dx 2

xl

dx = 0
Let u=_j dv = d2W

dx 2
dx

du -

dCj

dx
dx

dw

V = --

dx

x2

xl

d2w

2
dx

dw

dx = _j--
dx

x=0

L

I
0

dW

Cj' --
dx

dx

which yields

[KRot] =

L

I¢i

0

!

j dx

Hence, recall term #2.

6
EI , d4y
---r + I
K G dt 2 dx 2

As done previously, applying the Galerkin criterion yields
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[KRoT] = 5
EI*K'G

+ I

6 1 -6 1

5L i0 5L I0

1 2L -i -L

i0 15 i0 30

-6 -i 6 -i

5L i0 5L 10

1 -L -1 2L

10 30 10 15

Where 6 : Mass Density I

E : Young's Modulus

I : Moment of Inertia

P

K': Shear Coefficient (Shape Factor)

G : Modulus of Rigidity

: I/(i+ P/K'AG)

= Axial Load

Consider term #3,

m m

d2y

dt 2

As done previously, applying the Galerkin criterion yields

6AL

[Mo] : --
420

156

22L 4L 2

54 13L

-13L -3L 2

SYMMETRIC

156

2
-22L 45



Consider term #4,

d2y

P
dx 2

I01

As done previously, applying the Galerkin criterion yields

[Kg] = P

6/5L

z/zo 2L/Z5

-6/5L -i/i0

z/zo -L/30

SYMMETRIC

2L/15

Consider term #6,

621 * d4y

--'-'T'-- --

K G dt 4

W(x,t) = Z_(x)sin Ot

d4W
4

- _ _(x) Sin _t
dt 4

d4W

- _4 W

dt 4

Application of Galerkin's Criterion yields

x2 x2

I _i W dx : [ _i_j dx

x I Xl
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[MI] - |

( 420)K G

156

22L

54

-13L

4L 2

13L

-3L 2

SYMMETRIC

156

-22L 4L 2

Finally, consider the term

L

2

0

dy

dx

2

d2y

dx 2
dx

Integrate by parts.

2

Let U = y' dv = y" dx

du : 2 y' y" dx
!

V : y

L

ly
0

2 3
' y" dx : y'

L L

- 2 y' y" dx

0

L

I 2 ,,
3 y' y

0

dx = y'

L



Therefore
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L L

0

2y.y' dx

Let y = Z _i Yl

Apply Galerkin's Criterion

L

°I I- #i(x) y'
6

0

L

dx = 0

or

r.

KBo w =- H H '
6

0

dx

Evaluate the term H i

L

H 2 = I - 3(X/L) 2 + 2(X/L) 3

6x 6x 2

H 2 ' = L2 + L--_-

H 2 ' = +



+
L
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: 0

H3 : x

2 3
2x x

L L 2

H3 ' = 1

4x 3x 2

+ --
L L 2

H3

L

'1!

4x 3x 2
1 - -- +

L L2

L

3

= [i - 4 + 3] 3 -z

= - 1

H5 : 3(x/L) 2 - 2(x/L) 3

H 5 ' :

2
6X 6X

L 2 L 3

H5 L[,3 / = 6X 6X 2

L 2 L3
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3

6

L

0

= 0 .

x 2 x 3

H6 = - -- +--
L L2

_6 I " __

2x 3x 2

L L 2

H 6 '

L
2x 3x 2

+

L L2

3 L

-2 3 ]3+ - 0

- 1 .

Thus,

L

cI[Kbow] =-
6

0

0 0 0 0

0 -H 3 0 H 3

0 0 0 0

0 -H 6 0 H 6

dx



Which yields
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C

[Kbow] = _
6

0 0 0 0

0 -L2/12 0 L2/12

0 0 0 0

0 L2/12 0 -L2/12

By observation, KBo w possesses both rigid body translation

and rotation capability.

For the pre-loaded beam in space, one must consider

the bow string without the horizontally applied P force, and

replace the spring force with a constant P force in the

direction of the spring (Figure 14).

From Galerkin, the matrix equation included the terms

C

P[Kg] -- [Kbow] = 0
6

or

C[Kbo w] = 6 P [Kg]

One can approximate the condition in Figure 14 by replacing C

with 6P/L.
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P P

Figure 14 Pre-loaded Beam in Space



Thus, one obtains
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PL

[Khow] = --
12

0 0 0 0

0 -i 0 1

0 0 0 0

0 1 0 -i

Consider the performance of Kbo w in a buckling

problem.

Case 1 Simply-supported Beam (Figure 15).

This problem is traditionally solved using [K E] and

[Kg]. However, due to the nodal restraints in the vertical

direction, the P forces remain directed at the opposite

nodes. Thus, [K E and [Kbow] should provide a similar

solution. The well-known rigorous solution is

2
P = x EI

L 2

a • Solution using KE and Kg

EI

[Ke] = L3

12 6L -12 6L

6L 4L 2 -6L 2L 2

-12 -6L 12 -6L

6L 2L 2 -6L 4L 2
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P P

Figure 15 Simply-Supported Beam Buckling Problem
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[Kg]=

P

3OL

36 3L -36 3L

3L 4L 2 -3L -L 2

-36 -3L 36 -3L

3L -L 2 -3L 4L 2

The active degrees of freedom provide the following matrix

equation

[.i[..l_._[._lJ 2 4 30L -i 4 ][:::]0

0

A

Let P =

pL 2

30EI

Then

( ^ ^ )I

4 - 4P) (2 + P)

(2 + P) (4 - 4 P

= O.

(4 - 4P)(4 - 4P)-(2 + p)2 : 0

16 - 32P + 16 2 _ 4 - 4P _ 2 = 0

A15 2 - 36P + 12 : 0

A5 2 _ 12+ 4 = 0



P = 0.4, 2

111

Therefore,

(0.4)(30)EI
p=

L 2

= 12 EI

L 2

2
12 -x

Error : : 21.6 %
2

K

Consider a two-element model of the beam in Figure 15.

4L 2 -6L 2L 2 0

-6L 24 0 6L

2L 2 0 8L 2 2L 2

0 6L 2L 2 4L 2

P

[zg] : --
30L

4L 2 -3L -L 2 0

-3L 72 0 3L

-L 2 0 8L 2 -L 2

0 3L -L 2 4L 2

Active DOF: 2, 3, 4, 6
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The active degrees of freedom provide the following matrix

equation:

EI
m

A

L 3

4 -6 2 0

-6 24 0 6

2 0 8 2

0 6 2 4

P

A

30L

4 -3 -i 0

-3 72 0 3

-i 0 8 -I

0 3 -i 4

V2
A

_2 L
A

_3 L

0

0

0

0

A p_2
Letting P = --

30EI

Yields

4 - 4P

^

2 + P

^

24 - 72P

0

A

6 - 3P

A

2 + P

0

^

8 - 8P

2 + P

, I

o ^ I
6 - 3P

2+P [I I
All

4 - 4pI!
I I

0

; ; ; ^8,100 4 _ 28,800 3 + 29,664 2 _ 9,216 P + 576 = 0

P = 0.0828653, 0.4, 1.07269, 2

p_2
p -

30 EI



p ----

30EI ^

P

113

But L = L/2

Thus

p -

(30) EI (0.0828653) (4)

L 2

P = 9.9438

Error =

2
x - 9. 9438

2
K

= O.75% .

Now consider i element with Ke and Kbo w.

E!

L 3

4 2

2 4 12L - =[o0

Let

pL 2

p:--

12El

A

2+P

= 0

(4-p) 2 - (2+P) 2 = 0



A A A

16-8p+p2-4-4P-P 2 : 0

A

12-12P = 0

P= 1 •
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Therefore,

P = 12 EI

L 2

Which is identical with the one element

solution using Ke and Kg.

Now consider the two-element model.

EI

[Ke] : --

. A

12 6L -12

6L 4 2 - 6L

-12 -6L 24

6L 2 2 0

0 0 -12

0 0 6L

6L

2;.2

0

8;.2

-6L

2_. 2

0

0

-12
A

-6L

12

-6L

0

0
A

6L

2_2

-6L

4_,2

P

[Kbow] : --

12L

0 0 0 0 0 0

0 L2 0 -L 2 0 0

0 0 0 0 0 0

o ;2 o _;_ o ;2
0 0 0 0 0 0

o o o ;2 o ;2



Active DOF: 2, 3, 4, 6
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The active degrees of freedom provide the following matrix

equation:

EI
m

L 3

4 -6 2 0

-6 24 0 6

2 0 8 2

0 6 2 4

P

12L

• 1 0 -i 0

0 0 0 0

-i 0 2 -i

0 0 -i 1

81L 0

V 2 0
:

82L 0

e3L 0
• .

Letting

A

P =

p;2
12 EI

yields

r A

4 - P

I

-6
^

' 2 + P
#
I

I o

A

-6 2 + P

24 0

0 8 - 2P

6 2 + P

0

6
A

2 + P
A

4 - P

0

576 ;2

A

P = 1

A

- 1,152 P + 576 = 0

P =

12 EI



p Z

12 EI P

L2
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A

But L = L/2

Thus

p --

(12) EI (i) (4)

2
L

48 El

L2 , no good.

It should be noted that the problem actually modeled

by this 2 element formulation is as shown in Figure 16,

which does not correctly model a directed force between the

support nodes 1 and 3.
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Figure 16 3 Node [KE] and [KBow]



CHAPTER i0

GLOBAL FORMULATION OF BOW-STRING

Examination of [Kbow] indicates that rigid body

rotation capabilities occur due to the corresponding rows in

the matrix relating to the end shears having ali zero

coefficients. Hence, any combination of [Kbow] and [Kg]

will not have rigid body rotation capability. It has also

been shown that assemblage of [Kbow] elements did not model

a force directed between the end nodes.

Examination of a 2-element model (Appendix A) showed

that the only fictitious forces that occurred during rigid

body rotation were the end shears required for equilibrium.

The shear at the center node was zero. The corresponding

row in the geometric stiffness matrix is full, indicating

that there is a relationship between the stiffness terms at

each degree of freedom, and the shear at the center node.

Examination of the first and fifth rows, however,

would indicate that there is not any relationship between

the end nodes. This is inherent in the assembly process,

and is contrary to the basic supposition that we are

considering a problem where the applied forces remain

directed between the end nodes.
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Figure 17 Directed Force 2-element Representation



120

Consider again Argyris's methodology for the

directed force problem (Figure 17).

Let _
V 3 - V 1

L

If one neglects the change in the axial component of

P that occurs during rotation, as is customarily done (P cos

_ P), we obtain the consistent geometric stiffness matrix.

Suppose we retain the vertical component, P sin _,

and use Argyris's approach to develop a load correction

matrix. The load vector for this force becomes

R DFC : [P sin (V3-VI)/L, 0, 0, 0, -P sin (V3-VI)/L, 0]

The load correction matrix is generated using the equation

dRi DF

du i
, which yields
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[K DFc ] =

P

-- COS

L

0

0

0

P

-- COS

L

0 0 0 llvl-- COS

L

0 0 0 0

0 0 0 0

0 0 0 0

M I1 vl0 0 0 -- cos

L

0 0 0 0 0

0

0

0

For small rotation, cos (VI-V3)/L _ i, and [K DFC] becomes

[K DFc ] =

P P

--- 0 0 0 -- 0

L L

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

P P

-- 0 0 0 ---- 0

L L

0 0 0 0 0 0

At this point, combine [Kg] + [K DFc] and check rigid

body rotation. Since [K DFc] contains non-zero terms in rows

i and 5, and [Kg] pseudo-forces occur only in the same two

rows, only these two rows must be checked for rigid body

rotation capability.



Row 1

L J

= P [ -l.2e + 0.58 + 0.18 + 0.18 + 0.5e ]

= 0.

-1110, 121SL -IIL, -1110]

= P [ -0.5L - O.1L + 1.2L - 0.5L - O.1L ]

= O.

"Le/2

e

0

8

Lel2

8

L8/2

8

0

8

Lel2

e
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Therefore, [Kg] + [K DFc] does possess rigid body rotation

capability. By inspection, it also possesses rigid body

translation capabilities.



CHAPTER ii

PERFORMANCE OF [KT] + [K] DFC

Consider a two-element model using [KT] + [K] DFC,

utilizing the computer program NLBO.FOR. Table 13 compares

the results from NLBO.FOR with the finite element solution

using [K T] only (consistent [Ke] and [Kg] matrices). Note

that the stiffness matrix generated by NLBO.FOR does possess

the additional zero eigenvalue, required for a complete set

of rigid body modes. The other frequencies have extremely

close correlation with the traditional finite element

solution obtained using NLFINITE.FOR. Most of them were

identical. The largest difference was 2.8 % for frequency

#6.

When one considers the stiffness matrix [KT]

generated by NLFINITE.FOR for this problem, the following is

obtained:
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Table 13 Frequency Comparison

and NLBO.FOR

using NLFINITE.FOR
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Freq

#

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

O ¸

2 elements

P

O----O-----O--O-----_

4 el ements

A = 48 IN 2

6
E = 30 x i0 PSI

I = i000 IN 4

m = 0.03525 LB-SEC2/IN 2

L = i00 IN

P = 60,000,000 LBS

NLFINITE.FOR

Elem. 4 Elem.

0

0

1390

3532

7002

7847

14003

17683

27189

0

0

1385

3524

6514

7163

12565

14003

21782

22755

28006

33395

51048

84645

93157

NLBO.FOR

2 Elem.

0

0

0

3532

7002

7657

14003

17683

27090

4 Elem.

0

0

0

3524

6524

6969

12565

14003

21715

22755

28006

33395

51083

84645

93200

% Diff

2 Elem!

0

0

0

0

0

2.4

0

0

0.4

%Diff

4Elem

0

0

0

0

0

2.7

0

0

0.3

0

0

0

0.07

0

0.05
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[KT] x [Rigid Body Modes] 0 0 0

0 0 -6 x 10 7

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 6 x 10 7

0 0 0

As expected, large pseudo-forces occurred during rigid body

rotation.

The eigenvalues and eigenvectors generated by

NLFINITE were:

Lambda (i) =

Omega (i) :

0.0000

0.0000 RAD/SEC

The associated eigenvector is:

0 1000000000D+01

0 0000000000D+00

0 0000000000D+00

0 I000000000D+01

0 0000000000D+00

0 0000000000D+00



O.IO00000000D+OI

O.O000000000D+O0

O.O000000000D+O0
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Lambda (2) = 0.0000

Omega (2) : 0.0001 RAD/S

The associated eigenvector is

0.0000000000D+00

0 1000000000D+01

-0 I022543458D-17

0 0000000000D+00

0 1000000000D+01

-0 1102256093D-15

0 0000000000D+00

0 1000000000D+01

-0 5808321841D-16

Lambda (3) = 1930958.5265

Omega (3) : 1389.5893 RAD/S

The associated eigenvector is:

0.0000000000D+00

-0.1000000000D+01

0.1508421072D-01

0.0000000000D+00

0.1746464363D-14



0.2418478835D-01

0.0000000000D+00

0.1000000000D+01

0.1508421072D-01
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Lambda (4) = 12477499.9590

Omega (4) : 3532.3505 RAD/S

The associated eigenvector is:

0.0000000000D+00

0

-0

0

-0

-0

0

0

0

1000000000D+01

4125765357D-01

0000000000D+00

6561862202D+00

6954552347D-17

0000000000D+00

1000000000D+01

4125765357D-01

Lambda (5) : 49021276.5957

Omega (5) = 7001.5196 RAD/S

The associated eigenvector is:

0.1000000000D+01

0.0000000000D÷00

0.0000000000D+00



0.2041110487D-15

0.0000000000D+00

0.0000000000D+00

-0.1000000000D+01

0.0000000000D+00

0.0000000000D+00

Lambda (6) = 61570298.8787

Omega (6) = 7847.6744 RAD/S

The associated eigenvector is:

0.0000000000D+00

0

-0

0

0

0

0

-0

-0

1000000000D+01

8622993042D-01

0000000000D+00

I067276729D-15

7402023912D-01

0000000000D+00

1000000000D+01

8622993042D-01
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Lambda (7) = 196085106.3830

Omega (7) = 14003.0392 RAD/S

The associated eigenvector is:

0.1000000000D+01

0.0000000000D+00



0.0000000000D+00

-0.1000000000D+01

0.0000000000D+00

0.0000000000D+00

0.1000000000D+01

0.0000000000D+00

0.0000000000D+00
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Lambda (8) = 312696968.0165

Omega (8) = 17683.2397

The associated eigenvector is:

0.0000000000D+00

0

-0

0

0

-0

0

0

0

1000000000D+01

1694400209D+00

0000000000D+00

4120001744D+00

3619443243D-18

0000000000D+00

1000000000D+01

1694400209D+00

Lambda (9) : 739222146.5762

Omega (9) = 27188.6400

The associated eigenvector is:



0.0000000000D+00

0.1000000000D+01

-0.2124292332D+00

0.0000000000D+00

0.3363477755D-15

-0.I091964722D+00

O.0000000000D+00

-0.1000000000D+01

-0.2124292332D+00
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Let [_] be the matrix of mode shapes

(eigenvectors). Then [_]T [K] [_] would yield a

diagonalized stiffness matrix if all of the rigid body modes

were present. Performing that matrix multiplication yields

0 0 0 0 0 0 0 0 0

0 1 1.92 -0.66 0 -1.98 0 0.41 -1.36

6
0 1 2.54xi0 0 0 109 0 -i 41

0 -2 1 1.19x107 0 -3 0 220 -2

7
0 0 0 0 5.76xi0 0 -2 0 0

0 -i 113 -i 0 4.91xi07 0 -I -909

0 0 0 0 -i 0 2.30xi08 0 0

0 2 1 219 0 -I 0 1.33xi08 -i

0 1 43 -i 0 -908 0 0 3.30xi08
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It should be noted that small errors occur during

the computations (initial data errors, roundoff errors,

6
truncation errors, relative errors, etc.). The 2.54xi0

term in the 3,3 position is due to the lack of rigid body

rotation capability. The other non-diagonal terms should

also be zero, but may be attributed to the above mentioned

errors. The largest of these, i 909, is still relatively

insignificant compared to the magnitude of the diagonal

terms.

If one neglects the relatively small terms due to

arithmetic errors, the following diagonal matrix is

obtained:

"0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

6
0 0 2.54xi0 0 0 0 0 0 0

0 0 0 1.19xi07 0 0 0 0 0

0 0 0 0 5.76x107 0 0 0 0

0 0 0 0 0 4.91x107 0 0 0

0 0 0 0 0 0 2.30xi08 0 0

0 0 0 0 0 0 0 1.33xi08 0

0 0 0 0 0 0 0 0 3.30xi08

Now consider the modified finite element solution

from NLBO.FOR, which utilized the directed force correction

matrix. The two-element stiffness matrix generated is:



.288E8 0 0 -.288E8 0 0

0 .372E7 .78E8 0 -.432E7 .78E8

0 .78E8 .28EI0 0 -.78E8 .lIE10

-.288E8 0 0 .576E8 0 0

0 -.432E7 -.78E8 0 .864E7 0

0 .78E8 .lIE10 0 0 .56EI0

0 0 0 -.288E8 0 0

0 .6E6 0 0 -.432E7 -.78E8

0 0 0 0 .78E8 .lIE10

0 0 0

0 0 0

0 0 0

-.288E8 0 0

0 -.432E7 .78E8

0 -.78E8 .lIE10

.288E8 0 0

0 .372E7 -.78E8

0 -.78E8 .28EI
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The rigid body rotation matrix is

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

0 -50 1 0 0 1 0 50

T

0

0

i

[KT] x [Rigid Body Modes] = 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
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The large, erroneous term (± 6 x 107 ) due to lack of rigid

body rotation capability has been eliminated.

The eigenvalues and eigenvectors generated by NLBO,

corresponding to all rigid body and elastic modes and

frequencies, were:

Lambda (i) = -0.0122

Omega (i) = 0.0000 RAD/S

The associated eigenvector is:

0 0000000000D+00

-0 9999999660D-01

0 0000000000D+00

0 1701762335D-07

0 1999999966D-01

0 0000000000D+00

0 1000000000D+01

0 1999999971D-01

Lambda (2) = 0.0000

Omega (2) = 0.0000 RAD/S

The associated eigenvector is:

0.0000000000D+00

0.1000000000D+01

-0.I021057361D-08

0.0000000000D+00



0.9999999489D+00

-0.I021057341D-08

0.0000000000D+00

0.9999998979D+00

-0.I021057345D-08
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Lambda (3) = 0.0000

Omega (3) = 0.0001 RAD/S

The associated eigenvector is:

0.1000000000D+01

0.0000000000D+00

0.0000000000D+00

0.1000000000D+01

0.0000000000D+00

0.0000000000D+00

O.1000000000D+01

0.0000000000D+00

O.0000000000D+00

Lambda (4) = 12477499.9590

Omega (4) = 3532.3505 RAD/S

The associated eigenvector is:

0.0000000000D+00

0.1000000000D+01



-0.4125765357D-01

0.0000000000D+00

-0.6561862202D+00

-0.1373447533D-16

0.0000000000D+00

0.1000000000D+01

0.4125765357D-01
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Lambda (5) = 49021276.5957

Omega (5) = 7001.5196 RAD/S

The associated eigenvector is:

0

0

0

0

0

0

-0

1000000000D+01

0000000000D+00

0000000000D+00

8376574057D-16

0000000000D+00

0000000000D+00

1000000000D+01

0.0000000000D+00

0.0000000000D+00

Lambda (6) = 58630070.5158

Omega (6) = 7657.0275

The associated eigenvector

0.0000000000D+00

is:



0.1000000000D+01

-0.8951411454D-01

0.0000000000D+00

0.1259126794D-15

0.7572882821D-01

0.0000000000D+00

-0.1000000000D+01

-0.8951411454D-01
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Lambda (7) = 196085106.3830

Omega (7) = 14003.0392 RAD/S

The associated eigenvector is:

0

0

0

-0

0

0

0

0

0

1000000000D+01

0000000000D+00

0000000000D+00

1000000000D+01

0000000000D+00

0000000000D+00

1000000000D+01

0000000000D+00

0000000000D+00

Lambda (8) = 312696968.0165

Omega (8) = 17683.2397 RAD/S

The associated eigenvector is:



0.0000000000D+00

O.1000000000D+01

-0.1694400209D+00

0.0000000000D+00

0.4120001744D+00

0.3280451486D-16

0.0000000000D+00

0.1000000000D+01

0.1694400209D+00
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Lambda (9) = 733880567.5204

Omega (9) : 27090.2301 RAD/S

The associated eigenvector is:

0.0000000000D+00

0.1000000000D+01

-0.2134858855D+00

0.0000000000D+00

0.6206811895D-15

-0.II02288283D+00

0.0000000000D+00

-0.1000000000D+01

-0.2134858855D+00

Let [_]

(eigenvectors).

be

Then

the

[#]T

matrix

[K] [_]

of mode shapes

should yield a
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diagonalized stiffness matrix if all of the rigid body modes

were present. Performing that matrix multiplication yields

0 0 0 0 0 0 0 0 0

0 0 0 0.08 0 0 0 0.34 0

0 1.71 1 -0.55 0 -1.97 0 0.33 0.84

0 1 -1.99 1.19E7 0 -3 0 -39 -I

0 0 0 0 5.76E7 0 -2 0 0

0 -I -1.91 -2 0 4.91E7 0 -i -81

0 0 0 0 -i 0 2.31E8 0 0

0 0 0.56 -39 0 1 0 1.33E8 -i

0 0 1.65 -i 0 -81 0 -2 3.32E8

It should be noted that minor errors still occur

during the computations (initial data errors, roundoff

errors, truncation errors, relative errors, etc.). The

examination of these errors is beyond the scope of this

dissertation. It can be readily seen, however, that the

largest of these error has been reduced an order of

magnitude (from ± 909 to 81).

Neglecting the relatively small terms due to

arithmetic errors, the following diagonal matrix is

obtained:



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1.19E7 0 0 0 0 0

0 0 0 0 5.76E7 0 0 0 0

0 0 0 0 0 4.91E7 0 0 0

0 0 0 0 0 0 2.31E8 0 0

0 0 0 0 0 0 0 1.33E8 0

0 0 0 0 0 0 0 0 3.32E8
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Most importantly, the large erroneous term in the

3,3 position of the matrix obtained using the conventional

finite element formulation is now identically zero, and the

matrix has been properly diagonalized. Thus, adding [K] DFC,

as developed in this dissertation, corrected the lack of

rigid body rotation capability of the pre-loaded beam

element, as well as provided the correct diagonalized

stiffness matrix in the diagonalization/partitioning

methodology used in finite element dynamic analysis.



CHAPTER12

SUMMARY

Based upon this investigation, the following

conclusions have been developed:

i • Grounding is due to the development of pseudo-forces at

the element level required to counteract a force-

imbalance inherent in the development. This causes a

lack of rigid body rotational capability of the

geometric stiffness matrix.

• Although the consistent geometric stiffness matrix

provides acceptable results for most static displacement

and buckling problems, provided a sufficient mesh is

used, modifications of the global stiffness matrix

(zeroing out of erroneous terms, and appending the

missing rigid body modes) must be done to more

accurately predict the dynamic response•

• Although the rigid body mode test is routinely used to

detect the presence of modeling errors in finite element

models, it is not sufficient reason to invalidate a

model subjected to pre-|oads.

140



,

141

Various higher order stiffness matrices developed by

others, which include shear and rotatory inertia

effects, were examined. As expected, the inclusion of

these higher order effects does not compensate for the

inaccuracy (lack of rigid body rotation capability) of

the geometric stiffness matrix.

• Rigorous solutions of the pre-loaded beam with various

end conditions were developed.

, The Galerkin criterion was used to develop stiffness and

mass matrices from the rigorous solutions, which were

incorporated into a modified finite element algorithm.

. Sample problems involving pre-loaded beams with various

spring support conditions were solved using the modified

finite element algorithms, and the results compared with

the rigorous solutions.

. The occurrence of dynamic "flutter" instabilities was

determined by the rigorous solutions. There was good

correlation obtained using the modified finite element

algorithms.

• The tangential stiffness matrices developed did not

possess the three zero eigenvalues required for all the

rigid body modes.
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i0. The directed force (ie., bow-string) problem was

examined, since the force unbalance inherent in the

other developments does not occur in this situation.

ii. Development of the bow-string stiffness using Clough and

Penzien's technique provided a modified matrix, but it

was shown to lack rigid body rotational capability.

12. Development of the bow-string stiffness using Saunders

methodology provided a modified matrix, but it also was

shown to lack rigid body rotational capability.

13. A bow-string stiffness matrix developed from the

rigorous solution using Galerkin's criterion possessed

all the required rigid body modes. [KBow] was shown to

provide an acceptable first approximation to the
%

directed force buckling problem solved by Timoshenko and

Gere, and it performs properly in the

diagonalization/partitioning methodology used in dynamic

response. However, it does not properly model a pre-

loaded beam where the force is directed between the end

nodes only of an assembled mesh.

14. By considering the directed force problem at the global

level, using traditional development of [Kg] from the

horizontal component of the directed force, and

Argyris's load correction method for the vertical

component, a load correction matrix [K DFc] was
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developed, which, when combined with [Kg], provided a

complete set of rigid body modes. This combined matrix

performs properly in the diagonalization/partitioning

methodology used in dynamic response.

There is the potential for a great deal of future

work with the directed force beam element and the technique

used in its development. The use of [Kg] + [K DFC] should be

compared with the results using Craig-Bampton's

substructuring scheme for various beams. In addition,

physical testing of a pre-loaded directed force beam with

free/free boundary conditions should be undertaken for

comparison. The incorporation of these techniques in the

development of a directed force correction matrix for pre-

loaded membrane elements would be a logical extension.
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ABSTRACT

Deployable solar arrays consist of a "blanket" of

solar collectors, and a mast. The blanket is stretched into

position when the array is deployed. The stiffness of the

array is a function of the rigidity of the mast as well as

the tension in the blanket.

Current finite element frequency analysis consists

of using MSC Nastran solution 64 (non-linear analysis) to

obtain the tangential stiffness matrix of the array. This

matrix is then input, using DMAP alters, into MSC/Nastran

Solution 63 (dynamic analysis) to obtain the natural

frequencies of the array.

The author has found that pseudo-forces are

developed, however, at the element level due to limitations

inherent in the geometric stiffness matrices currently in

accepted use. In particular, the geometric stiffness

matrices lack the capability for rigid body rotation,

especially when the rotations are large.

The author demonstrates the limitations of the

analysis, shows where the errors are introduced in the

derivation of the geometric stiffness matrix, and examines

various techniques either to eliminate the pseudo-force
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generation and/or improve upon the convergence of the

current algorithms.

This paper is the product of an NASA/ASEE Summer

Faculty Fellowship and an on-going joint research effort

between Cleveland State University and the NASA Lewis

Research Center.

National Aeronautics and Space Administration/American

Society of Engineering Educators
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SPACE STATION SOLAR ARRAY

NASA's space station is powered utilizing

photovoltaic arrays, consisting of a deployable truss "mast"

and blanket substrates (Figure 18). The stiffness of the

split-blanket array is a function of the rigidity of the

mast as well as the tension maintained in the blankets. The

"blankets" themself possess negligible stiffness.

The free vibration characteristics of the split-

blanket solar arrays was studied using two methods. Mode

shapes and frequencies were calculated using equations of

continuum mechanics, as well as a finite element solution

using MSC Nastran [i] and [2].

The finite element modeling consisted of generating

a tangential stiffness matrix by applying the pre-tensioning

load in MSC/Nastran geometric non-linear solution (solution

64). The stiffness matrix generated was then input into

MSC/Nastran dynamic analysis (solution 63) to obtain the

natural frequencies and mode shapes [3].

The finite element analysis indicated that large

internal "pseudo-forces" developed when rigid body motion

was applied. An investigation was subsequently made to

determine whether the large pseudo-forces which developed
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Figure 18 Space Station Split-Blanket Solar Array
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were due to user modeling errors or limitations of the

finite element process.

The geometric stiffness matrix utilized in

MSC/Nastran solution 64 was found to be identical to the

stiffness matrix formulated by Martin [4]. For simplicity,

a 2-dimensional beam-column element was investigated.

LIMITATIONS OF CURRENT [Kg]

Typically, finite element static analysis is used to

solve linear elastic problems of the form

[xe] Cu} = (i)

where [Ke]

{u}

is the elastic stiffness matrix

is the nodal displacement vector

is the force vector

The [Ke] matrix must possess the capacity for rigid

body displacement. In other words, the element must be able

to translate or rotate without developing stresses (Figure

10).

The rigid body translation vector is {v, 0, v, 0}.

Similarly, the rigid body rotation vector is approximated by

{-LS/2,8,LS/2,8}, which can be written as 8{-L/2,I,L/2,1},

where 8 is the angle of rotation. Combination yields
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a,

1 3

2-Node Bernoulli Beam Element with

Degrees of Freedom Shown

bJ

I r 2 w

1 2

Rigid Body Translation in Y-Direction

|

L/2 _2

1 _/// n/2

i'

c. Rigid Body Rotation about Z-Axis

Figure 19 Rigid Body Modes



rigid

body

modes

v -L8/2

0 8

v L8/2

0 8

156

The elastic stiffness matrix for a 2-node Bernoulli

beam is

EI

[ze] =

12 6L -12 6L

6L 4L 2 -6L 2L 2

-12 -6L 12 -6L

6L 2L 2 -6L 4L 2

.................... (2)

where E = modulus of elasticity

I = moment of inertia

L = length of element

By definition of rigid body motion,

[Ke} {rigid body modes) must equal {0}. (3)

Substituting (i) and (2) into (3) yields

EI

I:Ze:]=

12 6L -12 6L

6L 4L 2 -6L 2L 2

-12 -6L 12 -6L

6L 2L 2 -6L 4L 2

1 -L/2

0 1

z L/2

0 1

0

0

0

0

0

0

0

0
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Therefore, [Ke] has the capacity for rigid body motion.

NASA LeRC routinely uses a DMAP alter which

calculates

[K] {rigid body modes} : {RFORCES (pseudo-forces)}.

movement.

For an elastic problem, the presence of large RFORCES would

indicate that stresses are being produced during rigid body

These pseudo-forces are an indication that

"grounding" has occurred, and that the model is not

reliable.

Many problems, such as the solar array, are non-

linear problems. Finite element solves non-linear problems

of the form

[[Xe] + [Kg]] {u} - {R} - {F}

where [Ke] is the elastic stiffness matrix.

[Kg] is the geometric stiffness matrix.

{R} is the output force vector at the end of a step.

{F} is the input force vector at the beginning of a

step.

{u} is the change in the displacement vector during a

step.

Graphically, this is shown by Figure 20.

The traditional [Kg] matrix, developed by Martin

[4], is
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Figure 20 Non-Linear Stiffening Curve
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[Kg] = Po

6/su 1/lo -6/sn 1/lo

1/lo 2L/15 -i/10 -L/30

-6/SL -i/i0 6/5L -i/i0

i/i0 -L/30 -I/I0 2L/IS

If I apply rigid body displacement during an incremental

load step, I obtain

PO

" 6/5L 1/10 -6/5L 1/10

1/10 2L/15 -1/10 -L/30

-6/5L -1/10 6/5L -1/10

1/10 -L/30 -1/10 2L/lS

1 -ne/2 '

0 8

1 L8/2

0 8

0

0

0 -Po 8

0 0

Po 8

0

It can be seen that [Kg] possesses the capacity for

rigid body translation, but not rigid body rotation. Thus,

Martin's [Kg] is not exact. It can also be shown that

MSC/Nastran non-linear analysis (based on Martin's

development) similarly does not have an exact geometric

stiffness matrix and will produce pseudo-forces. Therefore,

the RFORCE check DMAP alter for MSC/Nastran solution 64

(non-linear) analysis) is not sufficient criteria for

determining the validity of a model.

In spite of its deficiencies, Martin's [Kg] provides

acceptable results for solving statics problems due to the

iteration process. (Although [Kg] is not exact, the process

converges to the exact solution.)
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In dynamic analysis, however, finite element is

used to solve equations of the form

[.] (&'} + [K](u) = (R}

where [M] is the mass matrix.

{u} is the displacement (mode shape) vector.

{u'} is the second derivative with respect to time of

the displacement vector.

[K]

{R)

is the stiffness matrix (Ke or Ke + Kg, when

applicable).

is the excitation forces

There is no apparent guarantee that the natural frequencies

of vibration from (4) are accurate, when [Kg] is known to be

inexact.

LARGE ROTATION EFFECTS

The rigid body rotation vector previously used is

C{-L8/2,8,LS/2,8}. Figure 21 illustrates rigid body

rotation of a beam with an axial load [5]. If we let the
A

angle of rotation equal 28, then u = B{-L,2,L,2} T .

Consider the work/energy relationship of Figure 21

work done by Po = PoL( l-cos 28)

= 2PoL(l-cos 28)/2

But, (1-cos 28)/2 = sin 2 8 _ 82 + _(84) + ... .

Therefore, the work done = 2Po 82 + _(84) = -V = T K u/2,

where -V is the loss of potential energy.
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PO

PO

Figure 21 Rigid Body Rotation Angle of 2B



Similarly

uT K u/2 = poB2/2[-2 0 2 01 -L ] Po _2 (4L) = 2PoL82

2 2

L

2
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Therefore, Martin's [Kg] provides a correct energy

relationship for the representation shown.

It should be noted, however, that the displacement

in the Y direction (axial direction in the original

geometry) has been neglected when we let

0

"-h ] -L

u = , which is really (5)

L I o
2j L

2

The zero terms in (5) negate any contribution to the

equation from axial terms in the stiffness matrix. (If

there were any axial terms.) Since significant axial

loading occurs in the solar array (as well as other

beam/column problems), and these axial loads significantly

affect the stiffness, it intuitively seems unreasonable to
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loading occurs in the solar array (as well as other

beam/column problems), and these axial loads significantly

affect the stiffness, it intuitively seems unreasonable to

arbitrarily neglect the contribution of axial stiffness

terms and axial displacements.

The exact rigid body rotation vector is

Uexac t =

L/2 (I-COS 2B)

-L/2 SIN 2B

2B

-L/2 (l-COS 2B)

L/2 SIN 2B

28

(6)

Series expansion, and truncation of higher order terms

yields

u =

L82

-LB

28

-LB 2

LB

28

........................................... (T)
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Po

0 0 0 0 0 0

0 6/5L I/I0 0 -6/5L i/I0

0 I/i0 2L/15 0 -1/10 -L/30

0 0 0 0 0 0

0 -6/5L -1/10 0 6/5L -I/i0

o 1/1o -n/3o o -i/lO 2n/lS

• L_2]

-Po

2g

-LB 2

BL

2B

0

-Po(2B)

0
=

0

Po(2B)

0

(8)

and

EI

L3

AL2/I 0 0 -AL2/I 0 0

0 12 6L 0 -12 6L

2 2
0 6L 4L 0 -6L 2L

-AL2/I 0 0 AL2/I 0 0

0 -12 -6L 0 12 -6L

0 6L 2L" 0 -6L 4L"

Ls2]

-LB

2.8

-g132

!

Lg

213

2AEB 2

0

0

2AEB 2

0

0

(9)

From (8) and (9), when the more exact rigid body

rotation vector is used, neither [Ke] nor [Kg] possesses

rigid body rotation capabilities, although from (8), 2AE_ 2

approaches 0 as half the angle of rotation gets very small.

A similar procedure shows that both possess rigid body

translation capability in two directions.
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Using rigid body translation relationships, and the

expanded rigid body rotation vector, I can solve for

additional terms in the [Kg] matrix which enforces the rigid

body capabilities.

Using rigid body translation constraints, [Kq] has

the form

[Z__ql=Po

A B C

B 6/5L i/i0

c 1/10

-A -B

-B -6/5L

c 1/lO

-A -B C

-B -6/5L i/i0

2L/15 -C -i/i0 -L/30

-C A B -C

-1/10 B 6/5L -i/i0

-L/30 -C -i/i0 2L/15

(io)

Multiplying (i0) by (7) and setting the product

equal to the zero vector yields

PO

A B C

B 6/5L i/i0

c 1/zo

-A -B

-B -6/5L

C i/i0

-A -B C

-B -6/5L 1/10

2L/15 -C -1/10 -L/30

-C A B -C

-1/10 B 6/5L -i/I0

-LI30 -C -1110 2L/15

L_ 2

-Po

2_

-LI32

BL

213

0

0

0

0

0

0

..... (11)

Expanding row 3 yields



Po [ 2cLB2 - BL/5 + 4BL/15 - 2BL/30] = 0

Po2CL_ 2 = 0

C=0

Expanding row 2 yields

Po [2BL82 - 12BL/5 + 4B/10] = 0

2BLB - 2 = 0

B = I/LB

Expanding row 1 yields

Po [2ALB2 - 2] = 0

ALS 2 - 1 = 0

A = I/LB 2

Thus, substituting (12), (13), and (14) into (I0) yields

166

(12)

(13)

(14)

[K_.ql=Po

I/LB 2 I/L8 0 -I/LB 2 -I/LB 0

I/LB 6/5L I/i0 -I/LB -6/5L i/i0

0 I/i0 2L/15 0 -1/10 -L/30

-I/LB 2 -I/L8 0 I/L82 I/LB 0

-1/58 -6/5L -i/i0 I/L8 6/5L -i/i0

0 i/i0 -L/30 0 -I/I0 25/15

.... (15)



The strain energy U should equal zero.

calculated from the equation

poS2/2 [LS,-L,2,-LS,L,2] [K__q] LB

-L

2

-LB

L

0

2
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It can be

(16)

Performing the matrix multiplication in (16) yields

[0, 0, 0, 0, 0, 0] T . Therefore, no strain energy occurs

during rigid body rotation using [K__q].

INABILITY TO APPLY MODIFICATION

PROCEDURES TO [Ke]

[Ke] has the form

AL2/I KI2 KI3

KI2 12 6L

KI3 6L 4L 2

-AL2/I -KI2 -KI3

-KI2 -12 -6L

KI6 6L 2L'

-AL2/I -KI2 KI6

-KI2 -12 6L

-KI3 -6L 2L 2

AL2/I KI2 -KI6

KI2 12 -6L

-KI6 -6L 4L"

(17)

Multiplying (17) by (7) and setting the product

equal to the zero vector yields
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El

V

AL2/I KI2 KI3 -AL2/I -KI2 KI61

KI2 12 6L -K12 -12 6L

K13 6L 4L 2 -K13 -6L 2L 2

-AL2/I -KI2 -KI3 AL2/I KI2 -KI6

-K12 -12 -6L K12 12 -6L

K16 6L 2L" -K16 -6L 4L"

0

0

0

0

0

0

(18)

Expanding row 2 yields

2KI2LB 2 - 24LB + 24LB : 0

2KI2LB 2 : 0

Therefore, K12 must equal 0.

Expanding row 3 yields

-2KI3L82 - 12L2B + 8L2B + 4L2B : 0

-2K13LB 2 = 0 ---

Therefore, K13 must equal zero.

If K12 and K13 equal zero,

coefficients appear in line 1 of the [Ke] matrix.

add a correction term to Kll.

(AL2/I÷C)LB2-(AL2/I+C)(-LB 2) : 2(AL2/I+C)(LB 2)

.... (z9)

(20)

no additional

Suppose I

(21)

From (21) it can be seen that adding a correction term to

Kll will not eliminate the error.

Thus, [Ke] can not be modified to obtain rigid body

rotation capabilities for large rotations utilizing the

procedure used to modify [Kg]. The only possibility for

improving [Ke] must include corrections to existing terms.
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Several tests of the modified stiffness matrix were

undertaken. Summary of the tests follow.

a. RFORCE Check

One and two element beam stiffness matrices were

multiplied with the expanded rigid body matrix. In all

cases, no pseudo-forces were produced from rigid body

translation. The expanded rigid body rotation vector

yielded the following pseudo-forces.

[Ke]

Matrix

one element

two elements

Pseudo-forces

[2AB2E,0,0,-2AB2E,0,0]

[2AB2E,0,0,0,0,0,0,-2AB2E,0,0]

[Kg] one element

two elements

[K_.q] one element

[K_.q] two elements

[Ke+Kg]

[Ke+Kg]

[Ke+K_.q]

[Ke+K_.q]

[0,-2BPo,0,0,2_Po,0]

[0,-2BPo,0,0,0,0,0,2BPo,0]

one element

two elements

one element

two elements

[o,0,0,0,0,0]

[0,o,o,o,0,o,0,o,o]

[2AB2E,-2BP 0, 0,-2AB2E, 2BPo,0 ]

[2AB2E, -2BP0,0,0,0,0,-2A82E, 2BPo, 0 ]

[2A82E,0,0,-2A82E,0,0]

[2AB2E, 0,0,0,0,0,-2AB2E,0,0]

Based on the above, the modified [Kq] matrix

eliminates the B error terms generated using [Kg] standard.

The B 2 terms generated from [Ke] remain. Thus, when B (half
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the angle of rotation) is less than one radian, the total

error is reduced. The error is associated with a pseudo-

axial force only.

b. Eigenval ues

Using [Ke] and [Kg] standard, it was found that only

two zero eigenvalues exist . [Kq] has three zero

eigenvalues, plus one eigenvalues which is very close to

zero. The eigenvalues are close to zero even when only one

or two elements are used.

c. Stability Analysis

[K__q] was used in the solution of a simply supported

beam subjected to an axial load. The critical buckling load

was calculated, and compared with the traditional solution

using Martin's [Kg], as well as the exact solution.

When the boundary condition, 81 equals -S 2 ( as

occurs during buckling) was applied, the solution using

[K__q]was identical with the solution using Martin's [Kg].

CONCLUSIONS

Continuing effort is being made on improving the

capabilities of the element stiffness matrices used in

the solar array dynamic analysis. The modified [Kg]

developed reduces the pseudo-forces produced in the beam-

column stiffening problem, provided that the angle of
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rotation is less than two radians. Modifications must be

developed, however, to eliminate the pseudo-force

contributions from [Ke] which result from utilizing the

expanded rigid body rotation vector. This would permit the

tangential stiffness matrix [KT] to possess the three zero

eigenvalues associated with rigid body movement of any

magnitude.

It was disappointing that the [Kg] developed did not

approve upon the relatively slow convergence rate of the

stability problem. Further investigation is needed to

determine whether a modified [Ke] + [Kg] would improve upon

this convergence rate.

Extension of the modifications to the stiffness

matrices of other elements, particularly plate elements,

will also be developed.

Finally, testing of the performance of the modified

matrices in the actual solar array model, and comparison

with the continuum mechanics approach, will be performed.
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APPENDIX B

Matrix Methods (Dr. Bellini, Cleveland State University)

Finite Element Approach

x = U - V

U --

L

2 [dx

0

+ --

2

2 2

E,[d.wl+ --

2 _-J2/
J

2

dx

U "

L

0

{i}

2

du o
+

dx

{3}

dx

Assumption: Uo(X ) = [ HI

W(x) = [ H 2 H 3 H 5 H 6 ] u2

u3

u5

u6



Which are the shape functions for the static beam.

Therefore, [Kg] is only approximate.
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H 1 : 1 - x/L

H2 : (1-3(x/L) 2 + 2(x/L) 3)

H 3 = (x - 2x2/L + x3/L 2)

H 4 = x/L

HS = (3(x/L) 2 - 2(x/L) 3)

H 6 = (-x2/L + x3/L 2)

Shape functions for the static beam (Figure 22).

u = H 1 u I + H 4 u 4

du

-- = H I ' u I + H 4 '
dx

u4

W = H 2 u 2 + H 3 u 3 + H 5 u 5 + H 6 u 6

dW

-- = H 2 '
dx

u 2 + H3'U 3 + H5'u 5 + H6'U 6

d2W

dx 2
H2"u 2 ÷ H3"U 3 + H5"u 5 + H6"u 6

Term{l}

L L
2

 LL- .j L
0 0
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2 5

0 "0

Figure 22 2-Node Element Degrees of Freedom
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Li

ii

LI

dx lU
|
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ITEA[}[]-- uI u 4 -- 1 -I u 1

2 L -i 1 u 4

For term3_

L L

I[ ] IMTU= -- dx =
U EI d_2] 2

0 0

L

1[ ] I " "
= - u2 u 3 u5 U 6 EI H2"

2 H3"

0

H5"

H2" H3" H5" H6" ] dx u2

u3

u5

u6

H2" = -6/L 2 + 12x/L 3

H3" = -4/L + 6x/L 2

H5" = 6/L 2 - 12x/L 3
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H6" : -2/L + 6x/L 2

For EI = constant

i[-- u 2 u3
2

For term212_}_

u5

12 6L -12 6L

6L 4L 2 -6L 2L 2

-12 -6L 12 -6L

6L 2L 2 -6L 4L 2

• •

u2

u3

u5

u6
• •

L

I
0

EA[dUo
2 [dx

L

dx=J

0

EA duo [Id[_r[T dw

-- dx

2 dx dx

L

11-- u 2 u 3 u 5 u 6 EA-
2 dx

0

H2'] [H2' H3' H5' H6'] dx

H3' [
I

H5' I
I
i

H6' I
• .

u2

u3

u5

u6

H 2' = -6x/L 2 + 6x2/L 3

H 3' = 1 - 4(x/L) + 3(x/L) 2

H 5' = 6x/L 2 - 6x2/L 3

H6' = -2(xlL) + 3(xlL) 2
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Setting EA -- : P
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Axial force in member, and assuming

P = constant + tension

- compression

1

[u2 u3 pu5 u6 --
30L

36 3L -36 3L

3L 4L 2 -3L -L 2

-36 -3L 36 -3L

3L -L 2 -3L 4L 2

u2

u3

u5

u6
. .

[Kg]
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APPENDIX C

NLFINITE.FOR Computer Program and Output

c

c

c

c

c

c

c

c

c

c

c

NLFINITE.FOR (GEOMETRIC NONLINEAR PROBS)

REVISED 10-24-90 (IF STATEMENT IN 3CBI REVISED

MODIFICATION OF PROGRAM FINITEL.FOR VIBRATION

ANALYSIS OF BEAMS, RODS, AND PLANE FRAMES USING BEAM

ELEMENTS WITH AN AXIAL PRETENSION LOAD. SUBROUTINES

3CBI, DECOMP, MATINV, MATMPY, AND SEARCH.

DEVICE • IN READ AND WRITE STATEMENTS IS THE CONSOLE.

DEVICE 2 IN WRITE STATEMENTS IS THE PRINTER.

z IN THE PLACE OF A FORMAT STATEMENT NUMBER MEANS FREE FORMAT.
IMPLICIT REAL=8 (A-H,O-Z)

REALz8 L,IA,KEL,MEL,KEG,MEG

INTEGER SUB,ROWSUB,COLSUB,B,Z,EN,CFIX

DIMENSION KEL(6,6,8),MEL(6,6,B),KEG(6,6,B),MEG(6,6,8),
SRT(6,6),
$R( 6,6 ),TK(6,6) .TM( 6,6),5K( 27,27 ) ,SM( 27,27 ) ,RSK( 27.27 ),

SRSM( 27,27 ) ,E(B),A(B ),X(9) ,Y(9),GAMMA(B), IA(B)

DIMENSION _NM(B,2),CFIX(27),SUB(6)

OPEN(UNIT=2,FILE='PRN' )

READ IN PROBLEM DATA AS INDICATED BY MESSAGES ON CONSOLE. DATA

READ IN IS PRINTED OUT. (PROGRAM STATEMENTS 2 THROUGH 40)

WRITE(2,1 )

1 FORMAT( 'NLFINITE.FOR; FULL KE+KG MATRICES,REVISED 10-24-90')
WRITE(z,2)

2 FORMAT(/,' ENTER THE NUMBER OF BEAM ELEMENTS (I1)',/)

READ( z ,3 )NUMEL

3 FORMAT(I1 )

DO 4 I=I,NUMEL

WRITE( z ,5 )I
4 READ( • ,6 )A( I )

5 FORMAT(/,' ENTER A(',I1,') (F20.O)',/)

6 FORMAT(F20.O)
WRITE(2,7)

7 FORMAT(6X,'THE AREA ARRAY A IS:',/)
DO 8 I=1 ,NUMEL

8 WRITE( 2 ,9 )I ,A( I )

9 FORMAT(6X,'A(',I1,') = ',E14.7)

DO 10 I-I,NUMEL

WRITE(I,11 )I

i0 READ(-,12)E(I)

11 FORMAT(/,' ENTER E(',I1,') (F20.O)',/)
12 FORMAT(F20.O)

WRITE(2,13)

13 FORMAT(/6X,'THE ELASTICITY ARRAY E IS;',/)
DO 14 I=I,NUMEL

14 WRITE( 2 ,15 )I ,E( I )
15 FORMAT(6X,'E(',I1,') = ',E14.7)

DO 16 I--1,NUMEL

"WRITE( *, 17 )I
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16 READ( z,18)IA( I )

17 FORMAT(/,'ENTER IA(',Ii,') (F20.O)',/)

18 FORMAT(F20.O)

WRITE(2,19)

19 FORMAT(/,6X,'THE MOMENT OF INERTIA ARRAY IA I5; ',/)

DO 20 I81,NUMEL
20 WRITE(2,21)I,IA(1)

21 FORMAT(6X,'IA(',Ii,') - ',E14.7)

DO 82 I=I,NUMEL
WRITE( z ,83)I

82 READ( :_,B4 )GAMMA( I )

83 FORMAT(/,' ENTER GAMMA(',If,') (F20.O)',/)

84 FORMAT( F20.0)

WRITE( 2,B5 )

85 FORMAT(/,6X, 'THE GAMMA ARRAY IS; ',/)

DO 86 I=I,NUMEL

86 WRITE(2,BT)I,GAMMA(I)

B7 FORMAT(6X,'GAMMA(',If,') = ',E14.7)

WRITE( z ,8B )

88 FORMAT( ' ','ENTER THE AXIAL TENSION PRELOAD (PLOAD)',/)

READ( z ,89 )PLOAD

89 FORMAT(F20.O)

WRITE(2,90)
90 FORMAT(/,6X,'THE AXIAL PRETENSION LOAD IS;',/)

WRITE(2,91 )PLOAD

91 FORMAT(F20.O)

WRITE( := ,22 )

22 FORMAT(/,'ENTER THE NUMBER OF JOINTS, NJTS (I1)',/)

READ( z ,23)NJTS
23 FORMAT( 11 )

DO 24 I=I,NUMEL

DO 24 J=l ,2

WRITE(W_ ,25)I ,J
24 READ( w=,26)JNM( I ,J )

25 FORMAT(/,' ENTER JNM(',I1,',',11,') (If)',/)

26 FORMAT( I1 )

WRITE(2,27)
27 FORMAT(/,6X,'THE JOINT-NUMBER MATRIX IS;',/)

DO 28, I=I,NUMEL
28 WRITE( 2,29)JNM( I ,I ),JNM( I ,2)

29 FORMAT( IOX , I5 , I4 )
DO 30 I=I,NJTS

WRITE(z,31 )I, I

30 READ( =I=,==)X( I ),Y( I )

31 FORMAT(/' ENTER JOINT COORD. X( ',II,'),Y(',I1,'7(2F20.0)',/)
WRITE(2,33)

33 FORMAT(/,6X,'THE JOINT COORDINATES ARE;',/)
DO 34 I=I,NJTS

34 WRITE( 2 ,35 )I ,X( I ),I ,Y( I )
35 FORMAT(6X,'X( ',II,')=',E14.7,SX,'Y(',II,')=',E14.7)

WRITE(z,36)
36 FORMAT(/,' ENTER THE NUMBER OF F_XED COORDINATES(12)',/)

READ( z, 37 )NB

37 FORMAT(I2)
IF( NB .EQ .O )GO TO 94
DO 38 I=I,NB
WRITE( _ ,39 )I
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38 READ( w=,40)(FIX( I )

39 FORMAT(/,' ENTER (FIX(',12,') (12)',/)

40 FORMAT( I2 )

WRITE( 2,41 )

41 FORMAT(/,6X,'ARRAY CFIX IS;',/)

DO 42 I=I,NB

42 WRITE(2,43)I,CFIX(1)

43 FORMAT(6X,'CFIX(',12,')=',12)
C GENERATE NULL 3-DIMENSIONAL ARRAYS KEL AND MEt. PLANES OF KEL

C AND MEL WILL LATER CONTAIN THE LOCAL ELEMENT STIFFNESS AND MASS

C MATRICES, RESPECTIVELY.

94 DO 44 I=1,6

DO 44 3=I,6

DO 44 M=I,NUMEL

KEL( I ,J,M)=O.

44 MEL( I ,3,M)=O.

C GENERATE NULL MATRICES R AND RT WHICH WILL LATER BECOME THE

C TRANSFORMATION MATRIX AND ITS TRANSPOSE, RESPECTIVELY.

"DO 45 I=1,6

DO 45 3=1,6

R(I ,3 )=0.0

45 RT( I ,3 )=0.0

C GENERATE THE LOCAL ELEMENT STIFFNESS MATRICES AND STORE IN THE 3

C 3-DIMENSIONAL STIFFNESS ARRAY KEL (SEE FIG. 8-11 FOR THE

C EOUATION USED). EACH PLANE IN THE 3-DIM. ARRAY IS ONE ELEMENT

C STIFFNESS MATRIX.

DO 100 EN=I,NUMEL

IC=JNM( EN, I )

ID=JNM(EN,2)
L=DSQRT( ( X( ID)-X( IC)):=-2+(Y( ID)-Y( IC ))_===2)

QUOT=IA( EN)/A(EN)

RI=DSQRT( QUOT )

F=E(EN)xIA( EN )/L

P=F/RI_=2

Q=4.zPxRlz=2

5=3 .=0/(2 .:=L )

T=S_2 ./L

SINA=( Y( ID )-Y( IC ))/L

COSA=( X( ID)-X( IC))/L

KEL( I ,I ,EN)=P

KEL( 1,4,EN)=-P
KEL( 2,2 ,EN )=T*( 6. _tPLOAD/( 5 .zL ) )

KEL( 2,3 ,EN )=S+. 1w=PLOAD
KEL( 2,5,EN)=-T-( 6.*PLOAD/(S.:=L))

KEL( 2,6 ,EN )-S+. I_PLOAD

KEL( 3,3 ,EN )=O+( 2. zPLO.ADzL/1S. )

KEL( 3 ,S ,EN )=-S-. lzPLOAD

KEL( 3,6 ,EN )=Q/2 .-( PLOADzL/30. )

KEL( 4,4 ,EN)=P
KEL( S ,S ,EN )=T÷( 6. _tPLOAO/( 5 .=L ) )
KEL{ 5,6 ,EN )=-S-. I=PLOAD
KEL( 6,6 ,EN)=Q+(2.=PLOAD=L/15. )

DO 46 I=2,6

IMI=I-1

DO 46 3=1,IM1

46 KEL( I ,3 ,EN)=KEL(3,I ,EN 7.

GENERATE THE LOCAL ELEMENT MASS MATRICES AND STORE THEM IN THE



C
C
C

3-DIMENSIONAL MASS ARRAY MEL (SEE FIG. 8-11 FOR THE EQUATION

USED). EACH PLANE OF THE 3-DIM. ARRAY MEL CONTAINS ONE LOCAL
ELEMENT MASS MATRIX.

F=GAMMA( EN )=L/420.
P=70 ._F

P2=2 .=P
0=156 .x,F

S=22 .=L*F

T=54 .=F

U=4.zLzL=F

V=13 .zLzF

W=3 .zLxLzF

MEL( 1,1 ,EN )=P2

MEL(I,4 EN)=P
MEL(2,2 EN)=O
MEL(2,3 EN)=S
MEL(2,5 EN)=T

MEL(2,6 EN)=-V
MEL(3,3 EN)=U
MEL(3,5 EN)=V

MEL(3,6 EN)=-W

MEL(4,4 EN)=P2

MEL(5,5 EN)=Q

MEL(5,6 EN)=-S

MEL(6,6 EN)=U

DO 47 I=2,6
IM1=I-1

DO 47 3=l,IM1

47 MEL(I,J,EN)=MEL(J,I,EN)

GENERATE THE TRANSFORMATION MATRIX R AND ITS TRANSPOSE RT.

R( 1,1 )=COSA

R( I ,2 )=SINA

R(2, i )=-SINA

R(2,2)=COSA

R(3,3)=1.
R(4.4 )=COSA

R(,4 ,S)=SINA

R(S ,4 )=-SINA

R( s ,s)=COSA
R(6,6)=I.

DO 48 I=1,3

DO 48 3=1,3

RT(I ,3)=R(3,I )

48 RT(I+3,3+3)=R(3+3,I+3)

DETERMINE THE ELEMENT STIFFNESS MATRICES IN THE GLOBAL

COORDINATE SYSTEM (EQ. 8-93B) AND STORE THEM IN THE 3-DIM.

STIFFNESS ARRAY KEG. EACH PLANE OF THE 3-DIM. ARRAY CONTAINS

ONE GLOBAL ELEMENT STIFFNESS MATRIX.

DO 95 I=1,6

DO 95 3=1,6

TK( I ,3 )=0.0

DO 95 K=I ,6

95 TK( I ,3)=TK( I ,3 )+KEL( I ,K,EN)=R(K ,3)
DO 96 I=1,6

DO 96 3=1,6

KEG( I ,3,EN)=O.O
r_Pi qA K=I ._
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96 KEG(I,J,EN)=KEG(I,J,EN)+RT(I,K)zTK(K,3)

C DETERMINE THE ELEMENT MASS MATRICES IN THE GLOBAL SYSTEM (EO.
C 8-93A) AND STORE THEM IN THE 3-DIM. MASS ARRAY MEG. EACH PLANE

C OF THE 3-DIM. ARRAY CONTAINS ONE GLOBAL ELEMENT MASS MATRIX.

DO 97 I'I ,6

DO 97 _I=1,6

TM( I ,J)=O.O

DO 97 K=I ,6

97 TM( I ,3 )=TM( I ,3 )+MEL( I ,K ,EN )=R( K ,3 )

DO 98 I=1,6

DO 98 J=l ,6

MEG( I ,3 ,EN)=O.O

DO 98 K=I ,6

98 MEG( I ,J ,EN)=MEG( I ,J ,EN)+RT( I ,K )*TM( K ,J )

IO0 CONTINUE

C GENERATE NULL MATRICES 5K AND SM WHICH WILL BECOME THE

C SYSTEM STIFFNESS AND MASS MATRICES, RESPECTIVELY.

N=N_TS*3

DO 49 I=I ,N

DO 49 J=l ,N
SK(I,J)=O.

49 SM(I,J)=O.

C ASSEMBLE THE STIFFNESS AND MASS MATRICES.

DO 51 I=I,NUMEL

DO 50 J=l ,2
DO 50 M=I ,3
JI=J*3-M*I

50 SUB( Jl )=3-JNM( I ,J )-M+I

DO 51 8=1,6

DO 51 Z=l ,6
ROWSUB=SUB( B )
COLSUB=SUB( Z )

SK( ROWSUB, COLSUB )=SK( ROWSUB, COLSUB )÷KEG( B ,Z ,I )

51 SM(ROWSUB,COLSUB)=SM(ROWSUB,COLSUB)+MEG(B,Z,I )
C CALCULATE THE NUMBER OF DEGREES OF FREEDOM AND REMOVE ROWS AND

C COLUMNS FROM THE SYSTEM STIFFNESS AND MASS MATRICES.

NF=N-NB

IF(NB .EQ. O)GO TO 69

NA=I

KL=N-1

62 JC=l

63 IF(JC .EQ. CFIX(NA))GO TO 64

JC=3C+l

IF(JC .EQ. N)GO TO 6B
GO TO 63

64 DO 65 I=I,N

DO 65 J=JC,KL

SK( I ,J )=SK( I, O',el)

SM( I ,J)=SM( I ,J+l )

65 CONTINUE

DO 66 J=l ,N
DO 66 I=JC,KL

SK( I ,J)=SK( I÷1 ,J)

SM( I ,J)=SM( I+1 ,J)

66 CONTINUE

IF(NA .EQ. NB)GO TO 68

NA=NA÷I
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DO 67 I=NA,NB

67 CFIX( I )-(FIX( I )-i
GO TO 62

68 CONTINUE

C ASSIGN REDUCED STIFFNESS AND MASS MATRIX

C NAMES RSK AND RSM, RESPECTIVELY.

69 DO 70 I=I,NF

DO 70 J=I,NF

RSK( I ,J)=SK( I ,J )

70 RSM(I,J)-SM(I,_I)

C WRITE OUT THE REDUCED STIFFNESS AND MASS

C FROM THE BOUNDARY CONDITIONS.

C
C
C

71

72

73

74

200

ELEMENTS TO ARRAY

MATRICES OBTAINED

WRITE(2,71)

FORMAT(/,' THE REDUCED SYSTEM STIFFNESS MATRIX IS:',/)

WRITE(2,72) ((RSK(I,J),J=I,NF),I=I,NF)

FORMAT( ' ',6Ell.4/)
WRITE( 2,73 )

FORMAT(/,' THE REDUCED SYSTEM MASS MATRIX IS:',/)

WRITE(2,74) ((RSM(I,J),J=I,NF),I=I,NF)

FORMAT( ' ',6Ell.4/)
WRITE(2,200)
FORMAT(//,' ')

CALL SUBPROGRAM 3CBI "TO CALCULATE FREQUENCIES

CALL JCBI(NF,RSK,RSM)

STOP

END

LIBRARY .FOR
SUBROUTINES 3CBI, DECOMP, MATINV, MATMPY, AND
BY FINITEL.FOR AND TRUSS.FOR

SUBROUTINE .3CBI(N,K,M)
IMPLICIT REAL*8 ( A-H ,O-Z )

REAL=8 K,M,L,LT,LINV,LINVTR,RT,A,OMEGA,PROD,AV,DIFF,RAD

REALz8 COSINE ,SINE,Q,PRODI

DIMENSION K( 27 ,27 ) ,RT( 27 ,27 ) ,A( 27 ,27 )

DIMENSION OMEGA(27),M(27,27),L(27,27),LT(27,27)

DIMENSION LINV( 27 ,27 ) ,LINVTR( 27 ,27 ) ,PROD( 27 ,27 )
CALL DECOMP(M,N,L,LT)

CALL MATINV(L,LINV,N)

DO 204 I=i,N

DO 204 3=1,N

204 LINVTR( I ,J)"LINV(J,I )

CALL MATMPY( N ,K ,LINVTR ,PROD )
CALL MATMPY(N,LINV,PROD,A)

DO 14 I=i ,N

DO 13 3"1,N

RT( I ,J)=O.O

13 CONTINUE

RT( I ,I )=I .0

14 CONTINUE

NSWEEP"O

15 NRSKIP"O

NMINI=N-1

DO 25 I"I,NMINi

IPl-l't'l

DO 24 3=IPI,N

AV=O .5.( A( I ,3)+h( 3, I ))
nT=_=_( T T ",-A(.T ..'T "1

AND MODE SHAPES

SEARCH AS REQU]
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C

16

17

18

RAD=DSORT(DIFFzDIFF+4 .zAVzAV)

IF( RAD .EQ .O .O )GO TO 20

IF(DIFF.LT.O.O)GO TO IB

IF( DABS(A(I,I)).EQ.DABS(A(I,I))÷I00.==DABS(AV))G0 TO 16

GO TO 17

IF( DABS(A(J,3)).EO.DABS(A(3,3))*IO0.0=DABS(AV))G0 TO 20

COSINE=DSQRT( ( RAO+DIFF )/( 2. O==RAD ) )
SINE=AV/( RADzCOSINE )
GO TO 19

SINE=DSQRT( ( RAD-DIFF )/( 2. O*RAD ) )
IF(AV.LT .O .O )SINE=-SINE

COSINE=AV/( RAD=SINE )
REVISION OF IF STATEMENT FROM ORIGINAL PROGRAM

19 DBS=DABS(SINE)

IF(DBS.GT.l.0E-i6)GO TO 21
20 NRSKIP=NRSKIP÷I

GO TO 24

21 O0 22 LI=I,N

O=A( I ,L_.)

A( I ,LI )=COSINE-Q+SINE*A( 3 ,L1 )

A(J ,L'I )=-SINE*QeCOSINExA( J ,L1 )

22 CONTINUE

DO 23 LI=I,N
O=A( L1 ,1 )

A(L1 ,I )=COSINE=Q+SINE=A(LI ,3 )

A(L1,3 )=-SINE=Q+COSINE_A(L1,3)

Q=RT(LI ,I )

RT(L1 ,I )=COSINE*O+SINE*RT(L1,3)
RT(L1,3)=-SINE=KQ+COSINEWcRT(L1 ,J )

23 CONTINUE
24 CONTINUE
25 CONTINUE
KEEP A TALLY OF THE NUMBER OF SWEEPS.

NSWEEP=NSWEEP+ 1
IFCNSWEEP.GT.IOO)GO TO 33

WRITE( 2,26 )NRSKIP, NSWEEP
26 FORMAT(' ',SX,'THERE WERE ',I2,

$' ROTATIONS SKIPPED ON SWEEP NUMBER ',I2)

IF(NRSKIP.LT.Nz(N-1)/2)GO TO 15

PRODI=O .O

DO 27 3=I,N
PRODI=PRODI+RT( 3,1 )zRT( 3 ,N )

27 CONTINUE
WRITE( 2,28 )

28 FORMAT(/,' ',5X,'THE SCALAR
WRITE( 2,29 )PROD1

29 FORMAT( ' ',5X,'EIGENVECTORS
$F19.17/)

CALL MATMPY(N,LINVTR,RT,PROD)

DO 30 I=1 ,N
DO 30 3=I ,N

30 RT( I ,3)=PROD(I ,3)

DO 42 3=1 ,N
SUM=O .0

DO 31 I=1 ,N
31 SUM=SUM+DABS( RT( I ,3 ) )

AV=SUM/N

PRODUCT OF THE FIRST AND LAST')

OF THE TRANSFORMED MATRIX IS ',
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@UOT=DABS( RT( i ,J) )/AV

IF(QUOT.LT.O.OOOOOZ)GO TO 40

DO 32 I=2,N
32 RT( I ,J )=RT( I ,J )/RT( i ,J )

RT( I ,J )=i .ODO
GO TO 42

40 CALL SEARCH(RT,J,II,N)

BIG=RT( II ,J)

DO 41 I=1 ,N

41 RT(I,J)=RT(I,J)/BIG

42 CONTINUE

DO 110 I=I,N

IF(A(I,I).LE.O.O)GO TO 43

OMEGA( I )=DSQRT( A( I ,I ) )
GO TO 110

43 OMEGA( I )=0.0

110 CONTINUE

33 WRITE(2,34)NSWEEP

34 FORMAT(/,' ',5X,'THERE WERE ',13," SWEEPS PERFORMED.',

$/,5X,' THE EIGENVALUES AND EIGENVECTORS FOLLOW: ')

DO 39 3J=I,N

J=N-JJ+I
WRITE(2,35)JJ ,A(J,J )

35 FORMAT(/,' ',SX,'LAMBDA (',I2,') = ',F20.4)

WRITE( 2,111 )JJ ,OMEGA(J)
Iii FORMAT[' ',SX,'OMEGA(',I2,') = ',F20.4,' RAD/S')

WRITE[ 2,36)

36 FORMAT(/,' ',SX,'THE ASSOCIATED EIGENVECTOR IS:')

DO 37 I=I,N

37 WRITE( 2,3B)RT( I ,J )
38 FORMAT( ' ',SX,DIT.IO)

39 CONTINUE

RETURN

END

SUBROUTINE DECOMP(A,N,L,LT)

IMPLICIT REAL*B(A-H,OIZ)

DIMENSION A(27,27)

REALz8 L[ 27 ,27 ) ,LT( 27 ,27 )

DO 9 J=l ,N
IF(J.EG.I)GO TO 7
3M1=3-1

DO 6 I=3,N
IF(I .NE.J)GO TO 4
SUM=O .0

DO 3 K=I,JM1

3 SUM=SUM+L( I ,K)-L(J ,K)

L(3,3 )=DS@RT[ h(J,J )-SUM)
GO TO 6

4 SUM=O .0

DO 5 K=l,JMi

5 SUM=SUM+L[ I ,K )xL( J ,K )

L( I ,J)=(A( I ,J )-SUM)/L('J ,3)

6 CONTINUE

GO TO 9
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C

7 L(I,I)=DSORT(A(I,I))
DO 8 I=2 ,N

8 L(I,1)=A(I,I)/L(I,I)
9 CONTINUE

FILL IN ZERO VALUES OF MATRIX L
DO 11 J=2,N
JMI=J-I

DO II I=I,JMI

11 L(I,J)=O.O

ASSIGN VALUES TO THE UPPER TRIANGULAR MATRIX LT
DO 12 I=1 ,N

DO 12 J=l ,N

12 LT(I,J)=L(J,I)
RETURN

ENr_

C

C

C

SUBROUTINE MATINV(B,A,N)

C MATRIX INVERSION USING GAUSS-JORDAN REDUCTION AND PARTIAL

C PIVOTING. MATRIX B IS ]'HE MATRIX TO BE INVERTED AND A IS

C THE INVERTED MATRIX.

IMPLICIT REAL=B(A-H,O-Z)

DIMENSION B( 27 ,27 ) ,A( 27 ,27 ) ,INTER( 27 ,2 )

DO 2 I=1 ,N

DO 2 3=1 ,N

2 A( I ,J )=B( I ,J )

C CYCLE PIVOT ROW NUMBER FROM 1 TO N

DO 12 K=I ,N

JJ=K

IF( K .E@ .N )GO TO 6

KPI=K÷I

BIG=DABS( A(K ,K ))

C SEARCH FOR LARGEST PIVOT ELEMENT

DO 5 I=KP1,N

AB=DABS(A(I,K))

IF(BIG-AB)4,5,5

4 BIG=AB

JJ=I
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5 CONTINUE

C MAKE DECISION ON NECESSITY OF ROW INTERCHANGE AND

C STORE THE NUMBER OF THE TWO ROWS INTERCHANGED DURING KTH

C REDUCTION. IF NO INTERCHANGE, BOTH NUMBERS STORED EQUAL K
6 INTER(K ,1 )=K

INTER( K ,2 )=33

IF( 33-K)7,9,7
7 DO 8 3=1 ,N

TEMP=A(33,3)
A(JJ ,J)=A(K ,3)

8 A( K ,3 )=TEMP
C CALCULATE ELEMENTS OF REDUCED MATRIX

C FIRST CALCULATE NEW ELEMENTS OF PIVOT ROW

9 DO 10 3=1,N
IF( J .EO .K)GO TO %0
A(K ,3 )=A( K ,J )/A( K ,K )

10 CONTINUE

C CALCULATE ELEMENT REPLACING PIVOT ELEMENT

A(K,K)=I./A(K,K)

C CALCULATE NEW ELEMENTS NOT IN PIVOT ROW OR COLUMN

DO 11 I=1 ,N

IF( I .EQ .K )GO TO 11

O0 110 3=I,N

IF( J .EQ .K )GO TO 110

A( I ,J )=A( I ,J )-A( K ,J )*A( I ,K )

110 CONTINUE

11 CONTINUE

C CALCULATE NEW ELEMENTS FOR PIVOT COLUMN--EXCEPT PIVOT ELEMENT

DO 120 I=I,N

IF(I.EQ.K)GO TO 120
A(I ,K)=-A( I ,K)*A(K ,K)

120 CONTINUE

12 CONTINUE

C REARRANGE COLUMNS OF FINAL MATRIX OBTAINED

O0 13 L=I ,N
K=N-L+I

KROW=INTER( K, 1 )

IROW=INTER( K ,2)

IF(KROW.EQ.IROW)GO TO 13

DO 130 I=I,N

TEMP=A( I, IROW )

A( I ,IROW)=A( I .KROW

A( I ,KROW )=TEMP

130 CONTINUE

13 CONTINUE

RETURN

END

C

C

SUBROUTINE MATMPY(N,A,B,C)

IMPLICIT REAL*B( A-H ,O-Z )

C IS THE PRODUCT MATRIX OF A AND B

DIMENSION A( 27 ,27 ) ,B( 27 ,27 ) ,C( 27 ,27 )

DO 2 I=1 ,N

DO 2 3=I ,N
C( I ,3)=0.0

DO 2 K=I ,N

2 C( I ,3)=C( I ,3)+A( I ,K)*B(K ,3 )
RETURN

END
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c
c

c

SUBROUTINE SEARCH(RT,J,II,N)

THIS SUBROUTINE SEARCHES THE JTH COLUMN OF THE MATRIX RT

FOR THE LARGEST EIGENVECTOR COMPONENT. ITS ROW NUMBER IS

ASSIGNED TO THE NAME If.

IMPLICIT REAL*B( A-H ,O-Z )

DIMENSION RT(27,27)

II=l

BIG=DABS(RT( % ,J))

DO 3 I=2,N

AB=DABS(RT( I ,J ))

IF( BIG-AB )2,3,3
2 BIG=AB

II=I

3 CONTINUE

RETURN

END
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NLFINITE.FOR; FULL KE+KG MATRICES,REVISED 10-24-90

THE AREA ARRAY A IS:

A(1) = 0.4BOOOOOE+02

THE ELASTICITY ARRAY E IS;

E(1) = 0.3000000E+08

THE MOMENT OF INERTIA ARRAY IA IS;

IA(1) = 0.I000000E÷04

THE GAMMA ARRAY IS;

GAMMA(l) = 0.3525000E-0%

THE AXIAL PRETENSION LOAD IS;

O.

THE JOINT-NUMBER MATRIX IS;

% 2

THE JOINT COORDINATES ARE;

X(1)= O.O000000E÷O0 Y(1)= O.O000000E+O0

X(2)= 0.1000000E÷03 Y(2)= O.O0000OOE÷O0

THE REDUCED SYSTEM STIFFNESS MATRIX IS:

0.1440E÷08 O.O000E÷O00.O000E÷OO-O.1440E÷O80.O000E÷O00.O000E÷OO

O.O000E+O0 0.3600E+06 O.iBOOE+O80.O000E+OO-O.3600E÷06 0.1800E+08

O.OO00E÷O0 0.1BOOEe08 0.1200E÷10 O.O000E+OO-O.1BOOEeO8 0.6000E÷09

-0.%440E÷08 O.O000E+O00.O000E+O0 0'1440E+08 O.O000E+O00.O000E+O0

O.O000E+OO-O.3600E÷O6-O.1BOOE+O80.OOOOE÷O0 0.3600EeO6-O.IBOOE+OB

O.O000E+O0 0.1800E+08 0.6000E+09 O.O000E+OO-O.IQOOE+O8 0.1200E+10
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THE REDUCED SYSTEM MASS MATRIX IS:

0.1175E+010.O000E÷O00.O000E+O00.SB7SE+O00.O000E÷O00.O000E÷O0

O.O000E+00 0.1309E+01 0.1846E÷02 O.OOOOE+O0 0.4532E÷O0-O.1091E+02

O.OOOOE+00 0.1846E+02 0.3357E+03 0.O000E+00 0.1091E+02-0.2518E÷03

0.5875E+00 O.O000E+00 O.O000E÷00 0.1175E+01 0.0000E+00 O.0000E+00

0.000OE+00 0.4532E+00 0.1091E+02 0.O000E+00 0.1309E+01-0.1846E+02

O.0000E+00-O.1091E+02-O.2518E+03 O.O000E÷00-0.1846E+02 0.3357E÷03

THERE WERE S ROTATIONS SKIPPED ON SWEEP NUMBER I

THERE WERE 9 ROTATIONS SKIPPED ON SWEEP NUMBER 2

THERE WERE 9 ROTATIONS SKIPPED ON SWEEP NUMBER 3

THERE WERE 14 ROTATIONS SKIPPED ON SWEEP NUMBER 4

THERE WERE 15 ROTATIONS SKIPPED ON SWEEP NUMBER S

THE SCALAR PRODUCT OF THE FIRST AND LAST

EIGENVECTORS OF THE TRANSFORMED MATRIX IS 0.00000000000000000

THERE WERE 5 SWEEPS PERFORMED.

THE EIGENVALUES AND EIGENVECTORS FOLLOW:

LAMBDA (1) =

OMEGA( 1) =

0.0000

0.0000 RAD/S

THE ASSOCIATED EIGENVECTOR IS:

0.1000000000D÷01

O.OOOOO00OOOD÷O0

0.00000000000+00
0.1000000000D÷01

O.OO00000000D÷O0
O.O000000000D÷O0

LAMBDA (2) =

OMEGA( 2) =

0.0000

O.O000 RAD/S

THE ASSOCIATED EIGENVECTOR IS:

O.O000000000D÷O0

0.9334669755D÷O0

0.6653302446D-03

O.OO00000000D+O0

O.IOO0000000D÷01

0.6653302446D-03
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LAMBDA (3) =

OMEGA(3) =
0.0000

0.0000 RAD/$

THE ASSOCIATED EIGENVECTOR IS:
O.O000000000D+O0

0.1000000000D+01

-0.1977319320D-01

O.O0000000OOO+O0
-0.9773193204D+00

-0.1977319320D-01

LAMBDA (4) =

OMEGA(4) =
6127659.5745

2475.4110 RAD/5

THE ASSOCIATED EIGENVECTOR IS:

O.O000000000D+O0

0.1000000000D+01
-0.6000000000D-01

O.O000000000D÷O0

0.1000000000D+01

0.6000000000D-01

LAMBDA ( 5) =

OMEGA(5) =

49021276.5957

7001.5196 RAD/S

THE ASSOCIATED EIGENVECTOR I5:
0.1000000000D÷OI

O.OO00000000D÷O0

O.O000000000D÷O0

-0.I000000000D*01

O.O000000000D÷O0

O.O000000000D+O0

LAMBDA (6) =

OMEGA(6) =

71489361.7021

8455.1382 RAD/S

THE ASSOCIATED EIGENVECTOR IS:

O.O000000000D+O0

0.1000000000D÷01

-0.1200000000D÷00

O.O000000000D÷O0

-0.1OO0000000D+01

-0.1200000000D÷00
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APPENDIX D

3-Node Beam Derivation of [Kg]

Consider the 3-node beam shown in Figure 23.

2
u(x) = a0 + alx + a2x

u' = a I + 2a2x

u" = 2a 2

(u') 2 = al 2 + 4ala2x + 4a22x 2

v(x) = b 0 + blx + b2 x2 + b3 x3 + b4 x4

v' = bI + 262x + 363 x2 + 454 x3

2
v" = 2b 2 +663x +1264x

(v') 2 = 16x6b42 + 24x5b364 + 16x4b264 + 9x4b32 + 8x3blb4

+ 12x362b3 + 6x2blb3 + 4x2622 + 4xblb 2 + bl 2

uI = u(-L/2) = a0 - alL/2 + a2L2/4

u2 = u(0) = a 0

u3 = uL/2) = a0 + alL/2 + a2L2/4

vI = v(-L/2) : b0 - blL/2 + b2L2/4 - b3L3/8 + b4L4/16

v2 = v(0) = b 0

v3 = v(L/2) = b0 + blL/2 + b252/4 + b3L3/8 + b4L4/16

81 = v'(-L/2) = bI - b2L + 353L2/4 -b4L3/2
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1
O

-L/2

2

0

0

3

0

L/2

Figure 23 3-Node Beam Element



82 = v'(O) : b 1

83 = v'(L/2) : b I + b2L + 3b3L2/4 + b4L3/2
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Solve for ai and b i

a0 = u 2

b0 = v2

bI = 82

u I - u 2 = -alL/2 + a2L2/4

u 3 - u 2 = alL/2 + a2L2/4

u I - 2u 2 + u 3 = a2L2/2

a 2 =

2u I - 4u 2 + 2u 3

L2

u I - u3 = -alL

u 3 - u 1

aI =
L

V3 - V1 - 82L = b3L3/4

b 3 =

4v 3 4v I 482

L 3 L 3 L2

v3 - v I = blL + b3L3/4

vI + v3 - 2v 2 = 2b 0 + b2L2/2 + b4L4/8 - 2b 0
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83 - 81 : 2b2L + b4 L3

4Vl/L + 4v3/L - 8v2/L = 262L + b4L3/2

4Vl/L + 4v3/L - 8v2/L - 83 + 81 = -b453/2

8v I 8v 3 16v 2 283 281

b 4 - L4 L4 + L4 + L3 L3

b 2 -

83 81

2L 2L

L 2 [ 8Vl 8v 3 16v 2

2 [- L4 L 4 + L 4

283 281
+

53 L 3

b 2 =

83 81

2L 2L

4v I 4v 3 8v 2 83
+ -- +

L2 L 2 52 L

81
+ --

L

b 2 -

83 81 4v I 4v 3 8v 2
+ -- + -- +

2L 2L L 2 L 2 L 2

1

Ul = - PO
2

L

0

U W (u') 2

12al + 4a2xl+ lal 2 + 4ala2 x + 4a22x21

I
+ (16x6b42

(v') 2

+ 24x5b3b4 + 16x4b264 + 9x4b32

+ 8x3blb4 + 12x3b2b3) dx
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L

UI=- PO al a2 bl b2 b3 54
2

0

1 2x 0 0 0

2x 4x 2 0 0 0

0 0 1 2x 3x 2

0 0 2x 4x 2 6x 3

0 0 3x 2 6x 3 9x 4

0 0 4x 3 8x 4 12x 5

0

0

4x 3

8x 4

12x 5

16x 6

• o

al

a2

bl

b2

b3

b4

dx

Integration yields

L

[x] dx =

0

L L 2 0

L 2 4L3/3 0

0 0 L

0 0 L 2

0 0 L3

0 0 L 4

0 0 0

0 0 0

L 2 L3 L4

4L3/3 3L4/2 8L5/5

3L4/2 9LS/S 2L6

8L5/5 2L 6 16L7/7



198

al a2 bl b2 b3 b4] =

Ul Vl 81 u2 v2 82 u3 v3 83]
I/L 2/L 2

0 0

0 0

0 -4/L 2

0 0

0 0

I/L 2/L 2

0 0

0 0

0 0 0 0

0 4/L 2 -4/L 3 -8/L 4

0 II2L 0 -21L 3

0 0 0 0

0 -8/L 2 0 16/L 4

1 0 -4/L 2 0

0 0 0 0

0 4/L 2 4/L 3 -8/L 4

0 -I/2L 0 2/L 3
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PO

7

3L

0

18272

I05L

3469

0

105

-20
-- 0

3L

-22096

0
105L

304

0

5

13

-- 0

3L

3824

0

I05L

-3469

0

105

0

3469

105

659L

105

0

-4208

105

23L

2

739

105

-659L

105

-20

3L

0

0

64

3L

0

0

-44

3L

-22096

I05L

-4208

105

27392

105L

-72

-5296

I05L

4208

105

0

304

5

23L

2

-72

109L

56

5

-23L

2

13

3L

0

0

-44

3L

0

0

31

3L

0

0

0

3824

105L

739

105

-5296

I05L

56

5

147

105

-739

105

-3469

105

-659L

105

4208

105

-23L

2

0

-739

105

659L

105

[Kg]3-NODE ELEMENT



3 NODE RIGID BODY ROTATION VECTOR
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Exact
Expanded to

2 Terms

Factor out

BL

L/2 (1-cos 2B)

-L/2 sin 28

2B

0

0

28

-L/2 (1-cos 28)

L/2 sin 2S

28

L(B2-S4/3)

-L(B-283/3)

2B

0

0

2B

-L(82-g413)

L(8-283/3)

28

B-83/3

-i + 282/3

2/L

0

0

2/L

-8 + 83/3

1 - 282/3

28

-2 82

91.733 83 - 16 8

L(17.333 83 - 3 8

8 82

16 B - 106.666 83

L(33.0666 B3 - 6 8

- 6 82

14.9333 83

L(3 B - 17.3333 83 )

RFORCES using expanded

rigid body rotation vector
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cos 28 - 1

121.6 B - 68.6 sin 2B

23 LB - 13L sin 2B

4 - 4 cos 2_

80 sin 2B - 144 8

43.6 L8 - 24.8 L sin 2B

3 cos 2B - 3

22.4 B - 11.2 sin 2B

13 L sin 2B - 23 L

RFORCES using exact

rigid body rotation

vector
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Abstract

In order to be cost-effective, space structures must

be extremely light-weight, and subsequently, very flexible

structures. The power system for Space Station Freedom is

such a structure. Each array consists of a deployable truss

mast and a split "blanket" of photo-voltaic solar

collectors. The solar arrays are deployed in orbit, and the

blanket is stretched into position as the mast is extended.

Geometric stiffness due to the preload make this an

interesting non-linear problem.

The space station will be subjected to various

dynamic loads, during shuttle docking, solar tracking,

attitude adjustment, etc. Accurate prediction of the

natural frequencies and mode shapes of the space station

components, including the solar arrays, is critical for

determining the structural adequacy of the components, and

for designing a dynamic controls system.

This paper chronicles the process used in developing

and verifying the finite element dynamic model of the photo-

voltaic arrays. Various problems were identified in the

investigation, such as grounding effects due to geometric

stiffness, large displacement effects, and pseudo-stiffness

(grounding) due to lack of required rigid body modes.

Various analysis techniques, such as development of rigorous
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solutions using continuum mechanics, finite element solution

sequence altering, equivalent systems using a curvature

basis, Craig-Bampton superelement approach, and modal

ordering schemes were utilized. This paper emphasizes the

grounding problems associated with the geometric stiffness.

a

Di

d/dx, or '

d/dr, or

E

ea

{F)

F(x,t)

g

I

[KI

[Ke 3

[Kg3

L

M

dM

m

P

p,

Nomenclature

factor defined by Eq.(13)

arbitrary constants in Eq. (10)

differential operator with respect to position

differential operator with respect to time

modulus of elasticity

axial strain

input force vector at the beginning of a step

applied transverse force

factor defined by Eq.(14)

moment of inertia

stiffness matrix

elastic stiffness matrix

geometric stiffness matrix

length

moment

change in moment

mass per unit length

axial force

pseudo-force necessary for equilibrium



{R}

T

{u}

u

UA

UB

v

V

dV

V

dVol

x

Y

E

8

o
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force vector, output force vector at the end of

a step

kinetic energy

displacements at the node points

longitudinal displacement

strain energy due to axial load

strain energy due to bending

transverse displacement

shear

change in shear

potentia] of the external loads

change in volume

axis defined by Figure 25

axis defined by Figure 25

1/2 the angle of rotation

factor defined by Eq.(ll)

factor defined by Eq.(12)

angle of rotation

stress

Introduction

NASA's Space Station Freedom consists of various

modules supported by a space truss. Power for the space

station will be provided by a deployable system of split

blanket photo-voltaic arrays, which will have two degree of

freedom rotational capabilities in order to track the sun

during its orbit. The arrays are designed to be operated in
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during its orbit. The arrays are designed to be operated in

a zero-gravity environment.

NASA Lewis Research Center, along with its

contractors, have the responsibility for developing a

verified finite element dynamics model of the solar arrays,

which could be combined with the other space station

substructures for both structural and dynamic control

studies. The development of the model necessitated the use

of unique procedures, and rigorous analytical checks.

The procedure included the following:

. Development of an idealized model of the solar arrays,

and derivation of a unique solution for the response

frequencies for the idealized array cantilevered from

the space truss, using equations developed from

continuum mechanics. [1 ]

• Comparison of the frequencies from the MSC/NASTRAN

finite element dynamic model of the idealized array

with the rigorous solution from continuum mechanics.[2]

3. Refinement of the finite element mesh.

4. Rigid body mode checks of the finite element models.

• Various parameter studies involving the amount of

tension in the blanket, rigidity of the blanket tip

beam, type of elements used, etc..
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6. Craig-Bampton approach for appending rigid body modes

to substructures (superelements) [3].

7. Modal ordering schemes for identifying "important"

modes.

8. Study of grounding effects due to lack of rigid body

mode capabilities.[4]

A detailed summary of the project was presented [5].

It should be noted that this study is ongoing at the present

time. This paper will be restricted to the grounding

problems associated with the geometric stiffness due to

blanket pre-load.

Grounding

The space station solar arrays were modeled

utilizing MSC/NASTRAN. As a routine check, the stiffness

matrices generated by the model were multiplied by a matrix

of rigid body modes, and large pseudo-forces were developed

(grounding). The cause of this "grounding" phenomenum was

examined.

form

Finite element solves non-linear problems of the

[[Ke] + [Kg]] * {u) = {R) - {F}

where [Ke] is the elastic stiffness matrix, and [Kg] is the

geometric, or initial stress stiffness matrix.
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[Kg] is a function of the pre-load. Thus, it equals

zero for a linear problem. [Ke] possesses the required

rigid body modes. However, [Kg] lacks the capacity for

rigid body rotation. Hence, an erroneous stiffening, or

"grounding", occurs when a pre-loaded beam deforms.

The traditional, or consistent geometric stiffness

matrix, developed by Martin [6] and others, is

Kg =

"6/5L

I/1o

P -6/5L

i/1o

I/i0 -6/5L I/i0

2L/15 -i/i0 -L/a0

-i/i0 6/5L -i/i0

-L/30 -I/I0 2L/15

This matrix does not possess rigid body rotation

capabilities. Various refinements to the geometric

stiffness have been developed which contain higher order

terms [6,7,8] . However, none of these possess all the

rigid body modes. Bosela [4] developed a modified [Kg] with

complete rigid body modes when used with an exact rigid body

rotation matrix, but [Kg] lost some of its rigid body

capabilities.

Closer examination of the traditional formulation of

[Kg] indicated that there is a load imbalance in the

representation, and that pseudo-forces occur to maintain

equilibrium (Figure 24).
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P

P

pt

I

_ [L/2 xP STN(2B)

p'

Figure 24 P' Represents Pseudo-forces Required

for Equilibrium
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the lack of rigid body rotation capabilities for [Kg] is not

a problem, because the energy representation is correct. It

can be shown that it is correct to 8" terms, but error does

occur, as a function of B 4 For large rigid body rotation

as will occur with the solar arrays, this is significant.

It should be noted that as long as the pre-load P is

assumed to remain horizontal during rotation, work will be

done by the force. Thus, true rigid body rotation cannot

occur. In order for the strain energy to equal zero, the

force P must change its orientation as the beam rotates (

ie. a follower force).

Rigorous Solution Of Pre-Loaded Beam

Suppose we have an axially loaded beam in space

subjected to a time varying transverse loading (Figure 25).

The kinetic energy is

L

m (v')"
T : dx (I)

2

0

The strain energy due to bending is

U B = J E I
2

(V") " dx (2)
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P

M0

y,V

F(x,t)

ML

ell"'"'II?
Vo Id_ VL

P --X,U

P

V

v-dv
P

Figure 25 Beam in Tension and Differential Element



The strain energy due to axial load is

212

ijUA= -- o ea dVol (3)
2

Letting dVol = dA dx and applylng non-linear elasticity

yields

jEA[ ]U A : -- (du/dx)' + du/dx(dv/dx)" + i/4(dv/dx) 4 dx (4)
2

Neglecting axial displacement and higher order terms yields

L

JP[ ]UA : -- (v')" dx (5)
2

0

The potential of the external loads is

v dx + V o v(0,t) + M o v'(0,t)

- V L v(L,t) - M L v'(L,t)

(6)

Applying Hamilton's principle, and performing the

variation, yields
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t2 L

J [ I [EIv"6(v")+Pv'6(v')-mv6(v)-F(x,t)6(v)]dx

tI 0

+Vo6V(0,t)+Mo&V'(0,t)-VL&v(L,t)-ML&v'(L,t)]dt : 0.

(v)

Integrating by parts yields the differential equation

d'/dx'(EId'v/dx') - P d'v/dx" + m d'v/dt" = F(x,t) , (8)

which agrees with Clough in reference [i0], after a sign

change required to express the axial force in tension

instead of compression. This is also in agreement with

Shaker in Reference [ii].

For a beam in space, the moment and shear at the end

points must equal zero. Thus, the boundary conditions are

EIv"(0,t)=EIv"(L,t)=v'"(0,t)-P v'(0,t):v'"(L,t)-Pv'(L,t):0

EI EI (9)

Choose a solution of the form

v(x) = Dlsin(6x) + D2cos(6x) + D3sinh(£x) + D4cosh(£x).

(1o)

where 6 : [(a4+g4/4)i/2-g'/2] (ii)
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e : [(a4+g4/4)i/2+g'/2]

a 4 = mw'/EI

(12)

(13)

g" : P/EI . (14)

Applying the boundary conditions at x:0, and after much

mathematical manipulation, yields

Applying the boundary conditions at x=L, and after more

mathematical manipulations, yields

(16)

Expressing Eq.(15) and Eq.(16) into matrix form, setting the

determinant equal to zero, and after more mathematical

manipulations, the following characteristic equation is

obtained

±2a6(coshcLcos6L-1) + (¢6-56)sinhcLsin6L : 0 (17)

Using Eq.(13), this can be expressed as

±w3(m/EI) 3/2 (cosh¢Lcos6L-l) + (e6-66)sinh¢Lsin6L : 0 . (18)

By observation, when w:0, a:0, and &:0. Letting

sin(0):0 yields
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3 3/2
w (m/EI) (cosheLcos6L-l) = 0 . (19)

3
The w term indicates that there must be three zero roots of

"w", which suggests the three required rigid body modes.

Conclusion

Lack of complete rigid body mode capabilities is

inherent in the physical representation of the pre-tensioned

beam problem currently used to formulate the geometric

stiffness matrix. This lack of complete rigid body mode

capabilities invalidates the rigid body mode check for non-

linear problems, and adversely impacts the use of

traditional finite element techniques to predict dynamic

response of pre-loaded structures unless the missing rigid

body modes are somehow apppended on to the structure, such

as by the Craig-Bampton technique.

The rigorous solution of the axially-loaded beam

with free/free boundary conditions developed in this paper

may lend itself to the development of a new geometric

stiffness matrix for a beam element with full rigid body

capabilities.
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APPENDIX F

Diagonalization/Partitioning Methodology

Example 1 (Structural Analysis, Third Edition, Ghali and

Neville, Chapman and Hall Publishing Company, page 750.)

Consider the beam in Figure 26.

EI

[K] = --_
L

1.6154 -3.6923 2.7692

-3.6923 10.1538 -10.6154

2.7692 -10.6154 18.4615

W

[M] = -
g

4 0 0

0 i 0

0 0 1

{P} = P0 [ 2, i, I ]T sin Qt

i,

[M] { X } + [K] {X} = {0}

] [K] - Q2 [M] i : {0}

yields
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4W 0 , 2 PO sin Qt

L

W o • PO sin _t

L

PO sin Qt

Figure 26 Example i
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2 gEI
01 = 0.02588 -- D(1 ) =

wL 3

1.0

0.5225

0.1506
1

022 = 3.09908
gEI

D(2 ) =
wL 3

1.0

-6.3414

-4.5622

2 gEI
_3 = 25.89415 -- D(3 ) =

wL 3

1.0

-13.1981

19.2222

In matrix form, the Eigenvectors are

[_] =

]

1.0 1.0 1.0 /

I0. 5224 -6. 3414 -13. 1981

0.1506 -4.5622 19.2222

We can use this transformation matrix to create diagonal

A

[K] and [M] matrices.

A

[K] = {_}T [K] {_}

A

[M] = {_}T [H] {_}



But, since [K] {_} - o

A

Then, [K] = 02 [M]

2 [M] {¢},
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A

[M]

4.296 0 0

0 65.027 0

0 0 547.68

[42960 01[K] = 02 0 65.027 0

0 0 547.68

In normal coordinates, the equation of motion becomes

A

[M] {'n} + [0] [M] {n} = {_}

where

[0] =

012 0 0

2
0 02 0

0 0 03

and

{_} = {¢}T {p}

= P0 [ 2.673, -8.9036, 8.02412] T

{'n} + [9] {n} = [M] -I {_}
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or

nl
•. gEI

n 2 +--
•. WL 3

n3

0. 02588 0 0 i nl
i

0 3.09908 0 ! n 2

0 0 5. 0886 n 3

P0g

W

0.62206

-0.136921

0.0146511

Note that the equations are now un-coup1ed.

Example 2

Consider the beam in Figure 27.

Let

2
A = 48 in

E = 30 x 106 psi

4
I = 1000 in

L = 100 in

m = 0.03525 Ib-sec2/in 2

[Ke] =

0

0

0.144xi08

0 0.36xi06

0 O.18xlO 8 O.12xlO I0

-0.144xi08 0 0 0.144xi08

-0.36xi06 -O.18xlO 8 0 0.36xi0

O.18xlO 8 0.6xlO 9 0 -O.18xlO

SYMMETRIC

.12xlO
10
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P0 sin _t

t L

PO sin ot

t

Figure 27 Example 2
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[1.t] =

1.175

0 1.309

0 18.46

0.5875 0

0 0.4532

0 -10.91

335.7

0

i0.91

-251.8

SYMMETRIC

1.175

0 1.309

0 -18.46 335.7

{P) = P0 [ 0, i, 0, 0, i, 0 ] sin fit

2
fll : 0

2
f12 : 0

2
f13 = 0

2
f14 : 6,127,660

2
f15 = 49,021,277

2
_6 = 71,489,362

[¢] =

1 0 0 0 1 0

0 1 -50 i 0 i

0 0 1 -0.6 0 -0.12

1 0 0 0 -i 0

0 1 50 1 0 -i

0 0 1 0.06 0 -0.12



A

[K] = [¢]T [K] [¢] =

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

4.32 x 106 0 0

7
0 5.76 x i0 0

0 0 3.6 x 107
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is a diagonal matrix.

Example 3

Now consider the beam with an axial load as shown in

Figure 28.

Let

A = 48 in 2

E = 30 x 106 psi

I = i000 in 4

L = 100 in

m = 0.03525 Ib-sec2/in 2

T = i0,000,000 ibs
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P0 sin 9t

= I
10,000,000 Ibs

PO sin 9t

f
10,000,000 lbs

Figure 28 Example 3
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[KTAN] =

0.144X108

0 0.48X10

0 0.19X10

-0.144X108 0

0

0

-0.48xi06 -0.19X108

0.19X108 0.5667X109

SYMMETRIC

10
0.1333x10

0 0.144x108

0 0.48xi06

0 -0.19x108 .1333x10 10

{P} = PO [ O, i, O, O, i, 0 ] sin Rt

[¢] -

1 0 0 0

0 1 -i 1

0 0 0.018943 -0.06

1 0 0 0

0 1 1 1

0 0 0.018943 0.06

1 0

0 1

0 -0.119554

-1 0

0 -1

0 -0.119554

A

[K] = {¢}T [K] {¢}

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

4.0403 x 105 0 0 1226

0 5.5174 x 106 0 0

0 0 5.76 x 107 0

1228 0 0 3.8053 x 10



A

[K]TA N contains a large

the 3,3 position.

Thus,
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erroneous term (4.0403 x 105 ) in

[K]Tan is not the correct diagonal matrix. I

The lack of rigid body rotation capability of the [Kg]

matrix ultimately results in a large erroneous term in the
A

[K] matrix.


